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Rüdiger Valk

Report

University of Hamburg, Department of Informatics
Hamburg, Germany

valk@informatik.uni-hamburg.de

January 29, 2020

1 Introduction

Petri usually introduced the concept of coordination and synchronization using
the regimen or organization rule for people carrying buckets to extinguish a fire
[8] or by cars driving in line on a road with varying distances as shown in Figure
1 (from [9]). In the corresponding causal and infinite net, cars are represented
by black tokens moving forward in time and space, whereas the gaps are moving
also forward in time but in the opposite spacial direction1.

Fig. 1. Cars in Petri space.

1 In the net, the gaps are also ordinary black tokens but are represented here by a
cross to distinguish them from the cars.
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As Petri always followed the principle of discrete modelling, resulting in finite
structures, he defined cycloids by folding such structures with respect to space
and time. While Petri introduced cycloids in [8], a more formal definition has
been given in [5], [13] and [14]. As a consequence of this formalization some
properties could be derived, leading for instance to a synthesis procedure based
on observable parameters of the cycloid net, among which is the length of a
minimal cycle. However, the concrete structure of a circular traffic queue given
by a definite number of c traffic items and g gap instances was not given. As
examples of circular traffic items of cars, trains, air crafts, computer tasks or
electronic particles can been seen.

Motivation and results of this report are summarized as follows:

a) Presentation and formal definitions of circular traffic queues as elementary
models of synchronisation and cooperation.

b) Definition of circular traffic queues independently from Petri net modelling
by rewriting systems and transition systems.

c) Determination of safe nets, safe and secure cycloids that are behaviour equiv-
alent to the models in b).

d) Identification of the new class of regular cycloid systems.
e) Introduction of the notion of release message chain and cycle as synchro-

nization mechanism and tool for isomorphism proofs.
f) Interpretations of minimal cycloid cycles and the application of cycloid syn-

thesis to circular traffic queue systems.
g) Relating the found cycloids to unfoldings of coloured nets.
h) Cycloid composition and iteration.

As they will be used in different contexts in this article, we recall some
standard notations for set theoretical relations. If R ⊆ A × B is a relation and
U ⊆ A then R[U ] := {b|∃ u ∈ U |(u, b) ∈ R} is the image of U and R[a] stands
for R[{a}]. R−1 is the inverse relation and R+ the transitive closure of R. If
R ⊆ A × A is an equivalence relation then [[a]]R is the equivalence class of the
quotient A/R containing a. Furthermore N+, Z and R denote the sets of positive
integer, integer and real numbers, respectively. For a, b ∈ Z the term a|b denotes,
that a is a divisor of b.

2 Circular Traffic Queues

We define two classes of circular traffic queues, both with a number c of traffic
items. In the first model these traffic items, going from left to right, exchange
their position with a number g of different traffic items moving in the opposite
direction. In the second model the opposite traffic items are anonymous and can
be interpreted as gaps.

Definition 1. A circular traffic queue tq(c, g) is defined by two positive integers
c and g. Implicitly with these integers we consider two finite and disjoint sets
of traffic items C = {a1, · · · , ac} and G = {u1, · · · , ug} with cardinalities c and
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g, respectively. A state is a bijective index function ind : {1, · · · , n} → C ∪ G,
hence c+ g = n.

The labelled transition system LTS(c, g) = (States, T, tr, ind0) of tq(c, g) is
defined by a set States of states, a set of transitions T = {〈〈ti, aj〉〉|1 ≤ i ≤
n, 1 ≤ j ≤ c}, a transition relation tr and a regular initial state ind0. The
regular initial state is given by ind0(i) = ai for 1 ≤ i ≤ c and ind0(i) = gi−c
for c < i ≤ n. The transition relation tr ⊆ States × T × States is defined by
(ind1, 〈〈ti, aj〉〉, ind2) ∈ tr ⇔

∃u ∈ G : ind1(i) = aj ∈ C ∧ ind1((i+ 1)mod n) = u ∧
ind2(i) = u ∧ ind2((i+ 1)mod n) = aj ∧
ind2(m) = ind1(m) for all m /∈ {i, (i+ 1)mod n}

This is written as ind1
〈〈ti,aj〉〉−→ ind2 or ind1 → ind2. A transition sequence

ind0 → ind1 → · · · → ind0 of minimal length, leading from the initial state
ind0 back to ind0 is called a recurrent sequence. As usual ind1

∗→ ind2 denotes
the reflexive and transitive closure of tr. We restrict the set of states to the states
reachable from the initial state: States := R(LTS(c, g), ind0) := {ind|ind0

∗→
ind}.

A more intuitive notation would be to consider a state as a word of length n
over the alphabet C ∪G with distinct letters only, and the rewrite rule au→ ua
with a ∈ C, u ∈ G when inside the word and u · · · a → a · · ·u at the borders.
An example of two such transitions from tq(3, 4) is u a b v w x c→ u a v bw x c→
c a v bw xu with C = {a, b, c} and G = {u, v, w, x}. The model can be seen as
two queues of different traffic items from C and G moving in opposite direction,
but preserving their relative order in the cycle. When defining the elements of G
to be indistinguishable, they can be interpreted as gaps interchanging with the
traffic items from C.

Definition 2. A circular traffic queue with gaps tq-g(c, g) is defined as in Def-
inition 1, with the difference that |G| = 1 and the index function ind is not
bijective in general, but only on the co-image ind−1(C). In addition we require
that there is at least one gap: ind−1(G) 6= ∅. As the number g from Definition 1
is not longer needed, we use it here to define the number of gaps: g := n− c ≥ 1.

Setting G = {×} for tq-g(3, 4) the example from above modifies to×ab×××c→
×a×b××c→ c a×b×××. The model can be seen as a queue of different traffic items
from C moving right if facing a gap. While the regular initial state is natural
in the sense that the traffic items start without gaps in between, in a different
context it is useful that the gaps are equally distributed. If for instance, as in the
examples after the following definition of a standard initial state, the numbers c
and g are even, the queue in its initial state is composed of two equal subsystems
with the parameters c

2 and g
2 . An analogous situation holds for larger divisors.

Definition 3. A standard initial state ind0 of a circular traffic queue tq(c, g) is
defined by the state ind0(1)ind(2)0 · · · ind0(n) = a1w1a2w2 · · · acwc with aj ∈ C,
wj ∈ Grj (set of words of length rj over G) and rj = |{ x ∈ N | j−1 < c

g ·x ≤ j}|
for 1 ≤ j ≤ c .
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To be a consistent definition it should be verified that all the ri sum up to g.

Lemma 4. If ind is the standard initial state of Definition 3 then
c∑
i=j

rj = g.

Proof. This follows from the observation that the intervals in the definition of
ri are disjoint and define all together a set { x ∈ N | 0 < c

g · x ≤ c} = { x ∈
N | 0 < x ≤ g} of cardinality g. ut

To give an example, we consider the case c = 4, g = 6. We obtain (r1, r2, r3, r4) =
(1, 2, 1, 2) and a1×a2××a3×a4×× for the resulting standard initial state. The sets
in the definitions of r1 and r2 are {1} and {2, 3}, respectively. For c = 6, g = 4
we obtain a1a2×a3×a4a5×a6× .

Theorem 5. Let be ∆ = gcd(c, g) the greatest common divisor of c and g.
a) The length of each recurrent sequence (Definition 1) of a circular traffic queue
with gaps tq-g(c, g) is Γ (c, g) := c · (c+ g).
b) The length of each recurrent sequence of a circular traffic queue tq(c, g) is
Ξ(c, g) := g

∆ · (c+ g) · c.

Proof. In both cases we start with a regular initial state
ind0 = a1a2 · · · acu1u2 · · ·ug with aj ∈ C and uh ∈ G.

a) In the first case all ui equal×. To reach the initial state ind0 for the first
time, each traffic item ai ∈ C has to make n = c + g steps. Hence in total,
we have Γ (c, g) := c(c + g). Each transition of a traffic item aj , 1 ≤ j ≤ c is
occurring in a position i, 1 ≤ i ≤ n. It could be unambiguously labeled by [ti, aj ].
Hence the number of transitions is Γ (c, g).

b) Since the model tq(c, g) is symmetric with respect to G and C, as well as
the result Ξ(c, g) := 1

∆c(c+ g)g to be proved, it is sufficient to consider the case
g ≥ c. Furthermore we assume g > 1 since for g = 1 we also have c = 1 and the
problem reduces to case a) of the proof.

The recurrent sequence to be constructed is split into several pieces. We start
by shifting all cars to the end of the queue requiring g steps for each and g · c
steps in total:

ind0 = a1a2 · · · acu1u2 · · ·ug
g·c−times−→ u1u2 · · ·uga1a2 · · · ac (1)

Then we move the cars back to their initial position, needing c · c steps:

u1u2 · · ·uga1a2 · · · ac
c·c−→ a1a2 · · · acuc+1 · · ·ugu1 · · ·uc (2)

Ignoring the individual names of the elements uh ∈ G we have the situation
described in case a) of the proof needing c · g + c · c = c · (c+ g) steps. But here
in case b) of the proof the initial state is not yet reached since the items uh are
not necessary in their initial order. Therefore the c · (c + g) steps have to be
repeated in a number of different levels. In the following, the step from level k to
k + 1 is shown. The letter uikj denotes that the item uij of level k is in position

ind−1(uij ) = j.
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a1a2 · · · acuik1uik2 · · ·uikg
c(c+g)−→ a1a2 · · · acuik+1

1
uik+1

2
· · ·uik+1

g

with uik+1
1

= u(ik1+c)mod g

(3)

We now consider the sequence ui11ui21 · · ·uik1 · · · of the first items from G for all

levels k in equation (3): ui11ui21 · · ·uik1 · · · starting with ui11 = u1 from ind0. The
initial state is reached when uik1 = ui11 = u1 for the first time. By induction,

beginning with equations (1) and (2): ui11 = u1, ui21 = u1+c and by the induction
step from equation (3): uik+1

1
= u(ik1+c)mod g we conclude uik1 = u(k·c+1) mod g.

Hence to determine the value of k for a recurrent sequence we have to find the
smallest nontrivial solution in the following equation:

(k · c+ 1)mod g = 1 (4)

Next we prove k = g
x to be a solution of (4), where x ∈ N. This is proved by:

( gx · c+ 1) mod g = ([( cx · g) mod g] + [1 mod g]) mod g = (0 + 1) mod g = 1
since g > 1. In this calculation c

x has to be an integer. Therefore x is a divisor of
c. The same holds for k = g

x and x has also to be a divisor of g. For a minimal
non-trivial solution we obtain x = gcd(c, g) = ∆ and k = g

∆ . Recall that k is the
number times the step from equation (3) has to be repeated to obtain a recurrent

transition sequence. This gives the result Ξ(c, g) = k · c · (c+ g) = c·(c+g)·g
∆ . ut

The proof has shown that a sequence has to be repeated g
∆ times after having

reached a state where all traffic items from C are in their initial order. To
obtain an adequate labelling of the transitions we add a counter k, 0 ≤ k < r to
represent the repetitive behaviour. The counter is implemented as an exponent
of the names of traffic items akj and transitions tkv . Each time the traffic item aj
starts a new round in its (initial) position j ∈ {1, · · · , c} (with respect to the
regular initial state) the counter is increased. With the values of i and k in the
following definition, for each traffic item aj a number p = n · r of process states
is reached. Later we will restrict to the cases r = 1 (no repetition) and r = g

∆ .

Definition 6. Let be r ∈ N+ and Cr := {akj |aj ∈ C, 1 ≤ k < r}. A (r-repetitive)
labelled transition system LTSp(c, g) = (States, T, tr, ind0) with p = r · n and
c, g, n = c + g ∈ N+ is defined by a set States of states as in Definition 1
with C replaced by Cr, a set of transitions T = {〈〈tkv , aj〉〉|1 ≤ v ≤ p, 1 ≤ k <
r, 1 ≤ j ≤ c}. The transition relation tr ⊆ States × T × States is defined by
(ind1, 〈〈tkv , aj〉〉, ind2) ∈ tr ⇔

∃u ∈ G ∃ i ∈ {1, · · · , n} : v = k · n+ i∧
ind1(i) = akj ∈ Cr ∧ ind1((i+ 1)mod n) = u ∧
ind2(i) = u ∧ [ind2((i+ 1)mod n) = akj if i 6= j else a

(k+1)mod r
j ] ∧

ind2(m) = ind1(m) for all m /∈ {i, (i+ 1)mod n}
In particular, we consider the special cases tq-2(c, g) := LTSp(c, g) with p = g

∆ ·n
and tq-1(c, g) := LTSn(c, g). In the latter cases we have r = 1 and the labelling
of the transitions can be simplified to 〈〈ti, aj〉〉.
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For preparing the modelling of alternative formalisms, in particular of Petri
nets in Section 4, we give a specification of circular traffic queues by their proper-
ties. To be free from a more sequential specification we prefer a message-oriented
formulation. This is similar to Petri’s notion of a permit signal in [10].

Definition 7. A circular traffic queue tq-1(c, g) respectively tq-2(c, g) has the
following properties. Next, u ∈ G denotes a gap in the case of tq-1(c, g) and a
traffic item in the case of tq-2(c, g).
a) Each traffic item a ∈ C and u ∈ G is in exactly in one of n = c+ g positions.
b) Each traffic item a ∈ C can make a step from position i ∈ {1, · · · , n} to

position (i+ 1) mod n, if it has received a release message from u ∈ G in
position (i+ 1) mod n. After this step the u ∈ G is in position i.

c)The length of recurrent transition sequences is Γ (c, g) = c · n and Ξ(c, g) :=
g
∆ · c · n, respectively.
d) tq-2(c, g) consists of g

∆ copies of transition systems of type tq-1(c, g).
After c · n steps each transition sequence enters the next of these copies.

This specification is denoted as a definition, but requires some justification.
The items a), b) and c) follow from the definitions of a circular traffic queue.
The supplement concerning tq-2(c, g) follows from the proof of Theorem 5.

3 Cycloids

In this section (Petri-) nets and cycloids are defined. Also results which are used
in this article are cited from [13] and [14]. New with respect to these articles are
results on regular cycloids and the use of matrix algebra in proofs.

Definition 8. A net N is defined by a triple (S, T, F ) where S is an non-empty
set, called set of state elements or places, a non-empty set T of transitions and
a flow relation F , with the following restrictions: S∩T = ∅ and F ⊆ S×T∪T×S.

An element from X := S ∪ T is said to be a net element of N. Given two
nets N = (S, T, F ) and N ′ = (S′, T ′, F ′), a net morphism [11] is a mapping
f : X → X ′, denoted f : N → N ′, if f(F ∩ (S × T )) ⊆ (F ′ ∩ (S′ × T ′)) ∪ id and
f(F ∩ (T × S)) ⊆ (F ′ ∩ (T ′ × S′)) ∪ id. It is an isomorphism if it is bijective
and the inverse mapping f−1 is also a net morphism. In this case N and N ′ are
said to be isomorphic, which is denoted by N ' N ′.
•
x := F−1[x], x

•
:= F [x] denote the input and output elements of an element

x, respectively.
A transition t ∈ T is active in a marking M ⊆ S if

•
t ⊆M and t

• ∩ M = ∅.
If a transition t ∈ T is active in a marking M ⊆ S, the follower marking M ′

is defined and given by M ′ = M\•t∪t• . In this case we write M
t→M ′. As usual,

the reflexive and transitive closure of this relation is denoted M
∗→ M ′ (M ′ is

reachable from M .) A net together with an initial marking M0 ⊆ S is called a

net-system (N,M0) with its reachability set R(N,M0) := {M |M0
∗→ M}. The

reachabilty graph RG(N,M0) = (R(N,M0),→) is defined by the reachability set
as the set of nodes and the follower marking relation → as its set of arrows.
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ξη

tξ−1,η tξ,η−1

tξ,η

tξ,η+1 tξ+1,η

s→ξ−1,η
s←ξ,η−1

s←ξ,η s→ξ,η

Fig. 2. Denomination of Petri space elements

Definition 9. A Petri space is defined by the net
PS1 := (S1, T1, F1) where
S1 = S→1 ∪ S←1 , S→1 = {s→ξ,η | ξ, η ∈ Z} , S←1 = {s←ξ,η | ξ, η ∈ Z} , S→1 ∩ S←1 = ∅,
T1 = {tξ,η | ξ, η ∈ Z} ,
F1 = {(tξ,η, s→ξ,η) | ξ, η ∈ Z} ∪ {(s→ξ,η, tξ+1,η) | ξ, η ∈ Z}∪
{(tξ,η, s←ξ,η) | ξ, η ∈ Z} ∪ {(s←ξ,η, tξ,η+1) | ξ, η ∈ Z} .
X1 := S1∪T1. S→1 is called set of forward places and S←1 the set of backward

places.
→
•
tξ,η = s→ξ−1,η is the forward input place of tξ,η and in the same way

←
•
tξ,η := s←ξ,η−1, t

→
•
ξ,η := s→ξ,η and t

←
•
ξ,η := s←ξ,η.

Definition 10. A cycloid is a net C(α, β, γ, δ) = (S, T, F ), defined by para-
meters α, β, γ, δ ∈ N+, by a quotient of the Petri space PS1 := (S1, T1, F1)
(Definition 9), with respect to the equivalence relation ≡ ⊆ X1 ×X1 with
≡[S→1 ] ⊆ S→1 , ≡[S←1 ] ⊆ S←1 , ≡[T1] ⊆ T1 ,
xξ,η ≡ xξ+mα+nγ, η−mβ+nδ for all ξ, η,m, n ∈ Z , X = X1/≡
[[x]]≡ F [[y]]≡ ⇔ ∃x′ ∈ [[x]]≡ ∃y′ ∈ [[y]]≡ : x′ F1 y

′ for all x, y ∈ X1 .

The matrix A =

(
α γ
−β δ

)
is called the matrix of the cycloid. The value of

its determinant is A = det(A) = αδ + βγ = |T |. As it equals the number of
transitions it is called the area of C(α, β, γ, δ).

Cycloids are T -nets2, i.e. nets with |•s| = |s• | = 1 for all places s ∈ S.
Isomorphic nets are called as cycloids, as well. The embedding of a cycloid

in the Petri space is called fundamental parallelogram (see Figure 3, ignore
the tokens for the moment). If the cycloid is represented as a net N (without
explicitly giving the parameters α, β, γ, δ) we call it a cycloid in net form C(N).

For proving the equivalence of two points in the Petri space the following
procedure is useful.

2 Also called marked graphs.
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Fig. 3. Fundamental parallelogram of C(2, 4, 3, 2)

Definition 11. For two points x1,x2 ∈ X1 and the vector v = x2−x1 we define
a parameter vector π(v) = (m,n) of the parameters m and n of Definition 10.

Theorem 12. The parameter vector has the value π(v) = 1
A ·B · v where A is

the area and 1
AB = 1

A

(
δ −γ
β α

)
is the inverse of the cycloid matrix A. To decide

the equivalence x1 ≡ x2 it is suffient to check whether π(v) = π(x2−x1) ∈ Z×Z.

Proof. For x1 :=

(
ξ1
η1

)
,x2 :=

(
ξ2
η2

)
,v := x2 − x1 from Definition 10 we obtain

in matrix form: x1 ≡ x2 ⇔ ∃m,n ∈ Z :

(
ξ1
η2

)
=

(
ξ1 +mα+ nγ
η2 −mβ + nδ

)
⇔

∃m,n ∈ Z : v =

(
ξ2 − ξ1
η2 − η1

)
=

(
mα+ nγ
−mβ + nδ

)
=

(
α γ
−β δ

)(
m
n

)
= A

(
m
n

)
⇔(

m
n

)
= A−1v ∈ Z× Z .

It is well-known that A−1 = 1
det(A)B with B =

(
δ −γ
β α

)
if det(A) > 0 (see

any book on (linear) algebra, [6] for example). The condition det(A) = A =
αδ + βγ > 0 is satisfied by the definition of a cycloid. ut

Using Theorem 12 we derive the parameters m and n for the corners of the
fundamental parallelogram.

Theorem 13. With respect to the origin the parameters for the corners O, P ,
Q and R are (0, 0), (1, 0), (0, 1) and (1, 1), respectively.
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Fig. 4. Fundamental parallelograms with parameters for equivalent elements.

Proof. We give the proof in the case of R, while the other cases are proved in a

similar way. Using the coordinates

(
α+ γ
δ − β

)
of R we obtain by Theorem 12:

π(

(
α+ γ
δ − β

)
) = 1

A

(
δ −γ
β α

)(
α+ γ
δ − β

)
= 1

A

(
δ(α+ γ)− γ(δ − β)
β(α+ γ) + α(δ − β)

)
= 1

A

(
A
A

)
=(

1
1

)
ut

To give an example, in Figure 4 the fundamental parallelogram (Roman num-
ber I) of the cycloid C(4, 2, 2, 3) with corners O, P , R, and Q is given together
with parts of the eight neighbouring fundamental parallelograms (Roman num-
bers II - IX). Starting from a transition x of the fundamental parallelogram the
equivalent transition in such a neighbouring fundamental parallelogram is ob-
tained by the corresponding parameters (m,n) placed below the romain number.
For instance, the transitions y1, y2 and y3 are obtained by:

IX) y1 = x + A

(
m
n

)
=

(
2
1

)
+

(
4 2
−2 3

)(
−1
1

)
=

(
0
6

)
II) y2 = x + A

(
m
n

)
=

(
2
1

)
+

(
4 2
−2 3

)(
0
1

)
=

(
4
4

)
III) y3 = x + A

(
m
n

)
=

(
2
1

)
+

(
4 2
−2 3

)(
1
1

)
=

(
8
2

)
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Note that the added vectors are the repetitive vectors between the corners of the

fundamental parallelogram: y1 − x =
−−→
PQ,y2 − x =

−−→
OQ,y3 − x =

−−→
OR.

Theorem 14 ([13][14]). The following cycloids are isomorphic to C(α, β, γ, δ):

a) C(β, α, δ, γ), (This cycloid will be called the dual cycloid of C(α, β, γ, δ).)
b) C(α, β, γ − x · α, δ + x · β) if x ∈ N+ and γ > x · α,
c) C(α, β, γ + x · α, δ − x · β) if x ∈ N+ and δ > x · β.

Proof. Part a) has been proved in [13][14] as well b) and c) for the special case
of x = 1. The current form is derived by iterating the result. ut

Definition 15. For a cycloid C(α, β, γ, δ) constructed as a quotient from the
Petri space PS1 = (S1, T1, F1) by the equivalence relation ≡ we define a
cycloid-system C(α, β, γ, δ,M0) or C(N,M0) by adding the standard initial mark-
ing

M0 = {s→ξ,η ∈ S→1 | βξ + αη ≤ 0 ∧ β(ξ + 1) + αη > 0} /≡ ∪
{s←ξ,η ∈ S←1 | βξ + αη ≤ 0 ∧ βξ + α(η + 1) > 0} /≡

As in the case of circular traffic queues we define a regular initial marking
for cycloids. It is characterized by the absence of gaps between the traffic items.
In the case of the standard initial marking for every cycloid the transition t1,0
is active (Lemma 4.2 of [13],[14]). For a regular initial marking it is semi-active
only, as there is no gap in the following position. The corresponding token is
in s→−1,0. The next traffic item is in position 2 of the queue. The correspond-
ing token is in s→−1,−1 (see Figure 3). This argument holds for all but the last
transition. The corresponding traffic item is in position β of the queue. The cor-
responding token is in s→−1,−β+1. The last transition is facing all α gaps and can
therefore make α steps without another traffic item moving. Therefore we have
tokens corresponding to the gaps in the places s←0,−β , · · · , s←α−1,−β (see Figure
3). Equivalent places within the fundamental parallelogram can be computed.
For instance, the regular initial marking of C(4, 3, 3, 3) is represented within the
fundamental parallelogram by highlighted places in Figure 8.

Definition 16. For a cycloid C(α, β, γ, δ) a regular initial marking is defined by
a number of β forward places {s→−1,i| 0 ≥ i ≥ 1−β} and a number of α backward
places {s←i,−β | 0 ≤ i ≤ α− 1}.

Theorem 17 ([13][14]). The length of a minimal cycle of a cycloid C(α, β, γ, δ)
is

cyc(α, β, γ, δ) = cyc = γ + δ +

{
b δβ c(α− β) if α ≤ β
−b γαc(α− β) if α > β

As proved in [13][14], we can compute the parameters α, β, γ and δ of a
cycloid from its net presentation from the system parameters τ0, τa, A and cyc.
τ0 and τa refer to the standard initial marking M0. τ0 is the number of transitions
having as least one marked input place, τa is the number of active transitions,



11

A is (as before) the number of all transitions and cyc is the minimal length of
transition cycles. The corresponding equivalence is denoted as σ-equivalence.
Similar to the theory of regions, the following procedures do not necessarily give
a unique result. But for α 6= β the resulting cycloids are isomorphic.

Definition 18. Cycloid systems with identical system parameters τ0, τa, A and
cyc are called σ-equivalent.

Theorem 19 ([13][14]). Given a cycloid system C(α, β, γ, δ,M0) in its net re-
presentation (S, T, F,M0) where the parameters τ0, τa, A and cyc are known (but
the parameters α, β, γ, δ are not). Then a σ-equivalent cycloid C(α′, β′, γ′, δ′)
can be computed by α′ = τ0, β′ = τa and for γ′, δ′ by some positive integer
solutions of the following formulas using these settings of α and β:

a) case α′ > β′: γ′ mod α′ = α′·cyc−A
α′−β′ and δ′ = 1

α′ (A− β
′ · γ′),

b) case α′ < β′: δ′ mod β′ = β′·cyc−A
β′−α′ and γ′ = 1

β′ (A− α
′ · δ′),

c) case α′ = β′: γ′ = d cyc2 e and δ′ = b cyc2 c

These equations may result in different cycloids which are isomorphic in the
cases a) and b).

Definition 20. Given a net N = (S, T, F ), t ∈ T,M ⊆ S, Petri defines [8]:

a) Contact(t,M) :⇔ •
t ⊆M ∧ t

• ∩M 6= ∅
b) ReverseContact(t,M) :⇔ t

• ⊆M ∧ •
t ∩M 6= ∅

c) Transjunction(t,M) :⇔ •
t ∩M 6= ∅ ∧ t

• ∩M 6= ∅

A net system (N,M0) is

d) safe if ∀M ∈ R(N,M0) ∀t ∈ T : ¬Contact(t,M) ∧ ¬ReverseContact(t,M),
e) secure if it is safe and ∀M ∈ R(N,M0) ∀t ∈ T : ¬Transjunction(t,M)

and
f) live3 if ∀M ∈ R(N,M0) ∀t ∈ T ∃M ′ ∈ R(N,M0) : M

∗→ M ′ ∧ t active in
M ′.

Theorem 21 ([14]). The net system (N,M0) = (S, T, F,M0) of a cycloid sys-
tem C(α, β, γ, δ,M0) is live and safe and if γ, δ ≥ 2 it is also secure.

Circular traffic queues are composed by a number of c sequential and inter-
acting processes of equal length. In the formalism of cycloids this corresponds to
a number of β disjunct processes of equal length p. Cycloids with such a property
are called regular.

Definition 22. A cycloid C(α, β, γ, δ) with area A is called regular if for each
η ∈ {0, · · · , 1−β} the set set {tξ,η|1 ≤ ξ ≤ p} with p = A

β of transitions together

with the places within forms an elementary cycle4 and all these sets are disjoint.
p is called the process length of the regular cycloid. A regular cycloid together
with its regular initial marking M0 is called a regular cycloid system (C,M0).
3 live is used in the usual form (e.g. see [4], page 59)
4 An elementary cycle is a cycle where all nodes are different.
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Theorem 23. A cycloid C(α, β, γ, δ) is regular if and only if β is a factor of δ.

Proof. We first prove that starting in any point tξ,η of the fundamental para-
llelogram of the cycloid and proceeding in direction of the ξ-axis we will return
to tξ,η after passing p = A

β transitions.
By Theorem 12, to decide tξ+p,η ≡ tξ,η it is sufficent to check whether

π(v) = π((ξ + p), η)− (ξ, η)) ∈ Z× Z. Therefore we compute π(v) = π(

(
p
0

)
) =

1
A

(
δ −γ
β α

)(
p
0

)
=

(
δ·p
A
β·p
A

)
. A
β is the smallest value for p to obtain an integer

value in the second component of the last vector. Therefore an equivalent point
is not reached before passing p transitions and the cycle is elementary. By the
first component, to fulfill δ·p

A = δ
β ∈ Z it is necessary and sufficient that β is a

factor of δ. It follows that there is a number of β such elementary cycles of length
A
β covering the entire set of A transitions. Therefore no pair of these cycles can
have a common transition. ut

Regular cycloids can be seen as a system of β disjoint sequential, but cooperating
processes. To exploit this structure we define specific coordinates, called regular
coordinates, which are adapted to the process structure. The process of a traffic
item a1 starts with transition t0,0 which is denoted [t1, a1], having the input
place [s0, a1]. The next transitions are [t2, a1] up to [tp, a1] and then returning
to [t1, a1]. The other processes for a2 to ac (with β = c) are denoted in the same
way. In Figure 5 these transitions are shown together with the coordinates of the
Petri space. The latter will be also called standard coordinates. Not all places
and arrows are represented in this figure.

.

Definition 24. Given a regular cycloid C(α, β, γ, δ) regular coordinates are de-
fined as follows: transitions of process j ∈ {1, · · · , β} each with length p are
denoted by {[t1, aj ], · · · , [tp, aj ]}. For each transition [ti, aj ] the output places
are called [si, aj ] and [s′i, aj ]. The output transition of [si, aj ], 1 ≤ j ≤ β is
[t(i+1)mod p, aj ]. The output transition of [s′i, aj ] follows from the definition of
the cycloid and is given in Lemma 25. Regular coordinates are related to stan-
dard coordinates of the Petri space by defining the following initial condition
[t1, aj ] := t1−j,1−j for 1 ≤ j ≤ β.

While the output place [s′i, aj ] in regular coordinates takes its name from the
input transition, it remains to determine the output transition according to the
corresponding standard coordinates.

Lemma 25. The injective mapping stand from regular to standard coordinates
is given by stand([ti, aj ]) = ti−j,1−j for 1 ≤ i ≤ p and 1 ≤ j ≤ β. The output
transition of [s′i, a1] is [s′i, a1]

•
= [t(i+α+β−1)mod p, aβ ] while for 1 < j ≤ β the

output transition of [s′i, aj ] is [t(i−1)mod p, aj−1]. If β = γ = δ the two cases
coincide.
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Fig. 5. Regular cycloid system with regular and standard coordinates (extract).

Proof. For a given j by Definition 24 we have [t1, aj ] := t1−j,1−j . Adding a
value i − 1 to the index of t1 we obtain the index of ti, hence stand([ti, aj ]) :=
t1−j+(i−1),1−j .

To prove [s′i, aj ]
•

= [t(i−1)mod p, aj−1] for 1 < j ≤ β we first compute the cor-
responding standard coordinate stand([ti, aj ]) = ti−j,1−j . To obtain the output
transition of [s′i, aj ] we go to the next transition in η-direction ti−j,1−j+1 and
obtain stand−1(ti−j,2−j) = [t(i−j)−(2−j)+1, a1−(2−j)] = [ti−1, aj−1], where mod p
is omitted.

To make the proof for [s′i, a1] we start with [ti, a1] and compute again
stand([ti, a1]) = ti−1,0. The next transition in η-direction is ti−1,1 (see Figure
6). Using Theorem 12 we prove the equivalence ti−1,1 ≡ ti−1+α,1−β :

π(

(
i− 1

1

)
−
(
i− 1 + α

1− β

)
) = π(

(
−α
β

)
) = 1

A

(
δ −γ
β α

)(
−α
β

)
= 1

A

(
−δ · α− γ · β
−β · α+ α · β

)
=

1
A

(
−A
0

)
=

(
−1
0

)
∈ Z× Z

Going back to the corresponding regular coordinates the desired result is
obtained: stand−1(ti−1+α,1−β) = [t(i−1+α)−(1−β)−1, a1−(1−β)] = [ti+α+β−1, aβ)]
where mod p is omitted again. If β = γ = δ the two cases coincide as p = α+ β.

ut

Corollary 26. The regular initial marking of a regular cycloid system
C(α, β, γ, δ,M0) with process length p is
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Fig. 6. Computation of the input transition of [s′i, a1].

M0 = {[si, a(i+1)modβ ]|0 ≤ i ≤ β − 1} ∪ {[s′i, a1]|p− α+ 1 ≤ i ≤ p}.
For later reference, we note

←
•

[tβ , aβ ] = [sp−α+1, a1].

Proof. Since the mapping stand is defined on transitions, from the first place of
M0 in Corollary 26 [s0, a(0+1)modβ ] we go to its output transition [t1, a1] and
apply stand([t1, a1]) = t0,0. Going back in ξ-direction we obtain s→−1,0, which is
the first element in Definition 16. Doing the same with [sβ−1, aβmod β ] we come
via stand([tβ , aβ ]) = tβ−β,1−β = t0,1−β to s→−1,1−β . Hence we obtain the entire
forward places from Definition 16. Since the mapping stand is injective we can
conclude also in the inverse direction.

To prove the second part of the union recall that the last traffic item aβ is acti-
vated. Therefore also the backward input place [s′i, a1] of [tβ , aβ ] must be marked.
Using Lemma 25 the value of i must satisfy [s′i, a1]

•
= [t(i+α+β−1)mod p, aβ ] =

[tβ , aβ ], hence (i+α+ β− 1)mod p = β and i = (1−α)mod p = p−α+ 1. This
holds since β|δ ⇒ β ≤ δ and therefore p = A

β = α δβ + γ > α. The marked place

in question is therefore [s′i, a1] = [s′p−α+1, a1]. To determine the other elements
of {[s′i, a1]|p−α+1 ≤ i ≤ p} recall that the last traffic item aβ should be able to
make α steps before any other transition has to occur. Therefore also the places
[s′p−α+2, a1] to [s′p−α+α, a1] must be marked in the regular initial marking. ut

As an example see the regular cycloid system C(3, 3, 3, 3,M0) in Figure 10.
The given regular initial marking is {[s0, a1], [s1, a2], [s2, a3], [s′4, a1], [s′5, a1],
[s′6, a1], [s′7, a1]}. By bold circles the standard initial marking is also given.

It is useful in some cases to express the minimal cycle length cyc of a regular
cycloid by its process length p. While this can be perfectly done for the case
α ≤ β in the complementary case only partial results are achieved. These cover,
however, all the cases required in Section 4. Compared with general cycloids the
lack of symmetry of regular cycloids becomes apparent by these results.
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Lemma 27. Let be C(α, β, γ, δ) a regular cycloid with process length p and
minimal cycle length cyc.

a) cyc = p if α ≤ β.

b) If α ≥ β and α divides γ then cyc = β
α · p.

c) cyc = 2 · β if α ≥ β = γ = δ.

Proof. a) By Theorem 17 and δ = m · β for some m ∈ Z we obtain cyc =
γ + δ+ b δβ c · (α− β) = γ +m · β + bm·ββ c · (α− β) = γ +m ·α. This term equals

p = A
β = 1

β (αδ + βγ) = 1
β (α ·m · β + βγ) = α ·m+ γ.

b) If α ≥ β case a) applies to the dual cycloid C(β, α, δ, γ) (Definition 14),
which is regular since α divides γ. Hence cyc = p′ where p′ = A

α = β·p
α = is

the process length of the dual cycloid which is isomorphic to C(α, β, γ, δ) by
Theorem 14.

c) If α > β = γ = δ then cyc = γ + δ− b γαc · (α− β) = β + β − 0 · (α− β). If

α = β = γ = δ then cyc = γ + δ + b δβ c · (α− β) = β + β + 1 · 0. ut

The regular cycloid C(4, 3, 3, 6) does not satisfy any of the conditions of The-
orem 27. The parameters in question are cyc = 9, p = 11 and β

α · p = 3
4 · 11.

Fig. 7. Cycloid C(4, 2, 1, 1) with regular initial marking and minimal cycle in a)
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4 Net Representations of Traffic Queues

In this section different forms of traffic queues are represented by nets and cy-
cloids. We first show that the basic net for a circular traffic queue in Figure 19
a) equals C(g, c, 1, 1). The proof starts from the specification from Definition 7
to derive the parameters τ0, τa, A and cyc. Then using Theorem 19 the cycloid is
determined in terms of the parameters α, β, γ and δ. This approach has the ad-
vantage, that it is undoubtedly to obtain a cycloid as a result. This is, however,
not a complete proof, since it was not shown, that the specifications are correct
and complete. Therefore a proof is added showing that the nets are isomor-
phic. This proof is complete but does not give insight into structural properties.
Afterwards similar proofs are given for more complex cycloids.

4.1 Representation of a circular queues by safe cycloids

Using Theorem 19 cycloids can be generated directly from Theorem 5 and the
specifications of a circular traffic queue in Definition 7.

Theorem 28. Searching for a safe net meeting the specifications of a circular
traffic queue with gaps tq-1(c, g) (Definition 6) the cycloid C0(g, c) := C(g, c, 1, 1)
can be deduced. More precisely, the cycloid is isomorphic to the net Nbasic(c, g)
of Figure 19 a).

Proof. From Petri’s papers [8], [7] or [10] it follows definitely that the first two
parameters are β = c and α = g. To follow a more formal approach we determine
the parameters τ0, τa, A and cyc and then apply Theorem 19 to determine the
parameters α, β, γ and δ of the cycloid C(g, c, 1, 1).

Consider first the case g ≥ c and the state a1×k1a2×k2 · · · ac×kc . Due to
the assumption g ≥ c it is possible to have kj ≥ 1 (1 ≤ j ≤ c). This means
that all traffic items aj are able to move right, i.e they are active and therefore
τa = β = c. τ0 is the number of initially marked transitions. All g positions of the
queue which are empty send a release message to the left. Therefore a number
of τ0 = α = g transitions are marked, among these the c active transitions
mentioned before. Given a fixed traffic item a and a fixed position in the queue,
in a recurrent sequence the traffic item enters the position exactly once. Hence
there are g + c transitions. In the same step the traffic item a gives a release
message to enable the access to the position it is leaving. This results in a minimal
cycle of length 2.

With the parameters τa = β = c, τ0 = α = g,A = g+c and cyc = 2 obtained,

we compute with Theorem 19 : γ mod g = α·cyc−A
α−β = g·2−(g+c)

g−c = g−c
g−c = 1. With

a solution γ = 1 of this equation we obtain δ = 1
α (A−β ·γ) = 1

g (c+g−c ·1) = 1.

Next we prove that this cycloid C(g, c, 1, 1) is isomorphic to the basic tq-net
Nbasic(c, g) from Definition 32 and Figure 19 a). Starting in the origin (0, 0) of
the fundamental parallelogram of C(g, c, 1, 1) using Theorem 12 we compute the
smallest point (ξ, 0) on the ξ-axis equivalent to (0, 0):
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Fig. 8. Cycloid C(4, 3, 3, 3) represented as a net system.

(
m
n

)
= 1

A

(
δ −γ
β α

)
v = 1

g+c

(
1 −1
c g

)(
ξ
0

)
= 1

g+c

(
ξ
ξ · c

)
.

The smallest positive integer for m is ξ = g + c. Since A = g + c all transitions
have their position on the ξ-axis from (0, 0) to (g + c − 1, 0) and form a cycle.
This cycle is isomorphic to the cycle t1 · · · tc+g the basic net of Figure 19 a). It
remains to prove that ti,0 (1 ≤ i ≤ c + g) is connected to ti−1,0 via a place
isomorphic to s′i forming a cycle of length 2. As the backward output place of
ti,0 is s←i,0 and the output transition of the latter is ti,1 (see Figure 7 a)) we have
to prove: ti−1,0 ≡ ti,1. This is done by Theorem 12 using v = (i, 1)− (i− 1, 0):(
m
n

)
= 1

A

(
δ −γ
β α

)
v = 1

g+c

(
1 −1
c g

)(
1
1

)
= 1

g+c

(
0

c+ g

)
=

(
0
1

)
∈ Z× Z.

For the case g < c we observe that the net from Figure 19 a) is symmetric
in the following sense. Interpreting the places s′1, s

′
2, · · · s′c+g to be the slots of

the traffic items instead of s1, s
′
2, · · · sc+g we obtain an isomorphic system. By

the construction in the first part of this proof we obtain the cycloid C(c, g, 1, 1)
which is isomorphic to C(g, c, 1, 1) by Theorem 14. Therefore the theorem holds
also in this case. ut

As an example, in Figure 7 b) the cycloid C(4, 2, 1, 1) is shown. To illus-
trate the preceding proof by dashed lines the following equivalent transitions are
given: t3,0 ≡ t2,−1, t4,0 ≡ t3,−1 and t5,0 ≡ t4,−1. The transitions t0,0, · · · , t5,0
on the ξ-axis are instances of the transitions t0,0, · · · , tg+c−1,0 in the proof. The
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places s←1,0, s←1,−1, s←2,−1, s←3,−1, s←3,−2 and s←4,−2 correspond to the ”complementary
places” s′1, s

′
2, · · · , s′c+g of the net from Figure 19.

4.2 Representation of circular queues by secure cycloids

Cycloids are more expressive to model circular traffic queues and of particular
interest with respect to different questions. For instance, they respect individual
trafic items, similar to coloured nets. To distinguish them from the preceeding
model in Theorem 28 we assume c > 1 to obtain secure cycloids.

Fig. 9. Release message cycle in C(g, c, c, c).

Most important in the next theorem is the computation of the minimal length
cyc of cycles. Candidates are the length of the processes p = c + g and of the
release message cycle rm = 2 ·c. The latter starts with the release message chain
which is the sequence of release messages from traffic item ac to ac−1, from ac−1
to ac−2 and so on. This can be seen as the most important synchronization
mechanism of the system. Finally we obtain cyc = min{p, rm}.

Theorem 29. Searching for a regular cycloid meeting the specifications of a
circular traffic queue with gaps tq-1(c, g) (Definition 6) the cycloid C1(g, c) :=
C(g, c, c, c) can be deduced. It has the process length p = g+ c and minimal cycle

length cyc =

{
p = g + c if c > g
2 · c if g ≥ c (in accordance with Lemma 27 a) and c)).
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Proof. For the determination of α and β we argue as in Theorem 28, i.e. α = g
and β = c. If the total number of transitions is A and there are c traffic items
with the same process length, this process length is p = A

c . In a secure cycloid,
due to the Lemma of Petri/Stehr, all these cycles are disjoint. Petri made the
assertion [10] that a cycloid with γ, δ ≥ 2 is secure, if every pair of successive
arcs lies on a basic cycle. A basic circuit is a cycle with exactly one edge marked.
This has been proved (also for the more general case of T-systems) by Stehr [12]
and it is therefore called the Lemma of Petri/Stehr.

As there is a number c of disjoint communicating processes of equal length
p the net to be constructed is a regular cycloid (Definition 22) and we can
use the naming of Definition 24 and Figure 5. The missing places of this net
are obtained by considering condition b) of the specification in Definition 7 as
follows. Transition [ti, aj ] models the step of car aj in position i. In this step
it is sending a release message to be received by car a(j−1)modn by transition
[t(i−1)modn, a(j−1)mod c]. This is modelled by a new place [s′i, aj ] and arrows
([ti, aj ], [s

′
i, aj ] and ([s′i, aj ], [t(i−1)modn, a(j−1)mod c] (see Figure 14). As a result,

we obtain additional c · p places, i.e. in total the double of the number of tran-
sitions.

To find a minimum length cycle, we next consider a sequence of transi-
tions, which we call the release message chain, rm-chain for short. The rm-chain
starts in some transition [ti, aj ] and continues via place [s′i, aj ] and transition
[ti−1, aj−1] down to [ti−c+1, aj−c+1], i.e. the process of all traffic items are passed
(see Figure 9). Again, first and second index is computed modulo n and c, re-
spectively. In the following the rm-chain is closed to a release message cycle.

To close the cycle we continue within the process cycle of car aj−c+1 a num-

ber of c transitions until [ti−c+1+c, aj−c+1] = [ti+1, aj−c+1] and [ti+1, aj−c+1]
←
•

=
[s′i+1, aj−c+1]. For the final step by Lemma 25 there are two cases to com-
pute [s′i+1, aj−c+1]

•
= [ti, aj ] (Figure 9). If aj−c+1 = a1 then [s′i+1, aj−c+1]

•
=

[ti+1+g+c−1, ac] = [ti, aj ] since (i+ 1 + g+ c− 1)mod (g+ c) = i and j − c+ 1 =
1 ⇒ c = j. If aj−c+1 6= a1 then [s′i+1, aj−c+1]

•
= [ti, aj−c+1−1] = [ti, aj ] since

(j − c)mod c = j.

The length of the rm-cycle is rm = 2 · c transitions and there is non shorter
cycle connecting the process cycles. These process cycles have the length of

p = A
c = c·(c+g)

c = c+g transitions and are also candidates for an overall minimal
cycle. Therefore the overall minimal cycle of the cycloid is cyc = min{2 ·c, c+g}

or cyc =

{
2 · c if g ≥ c
c+ g if c > g

For a regular cycloid we construct the following recurrent transition sequence,
starting with [tc, ac] in the standard initial marking: [tc, ac], [tc−1, ac−1], · · · ,
[t1, a1], · · · · · · , [tc+n−1, ac], [tc+n, ac−1], · · · ][tn, a1] of length c · n. By [14] the
cycloid is strongly connected and therefore has a T-invariant of the form
(x, x, · · · , x), x ∈ Z (see reference [3]). This means that all recurrent sequences
contain each transition exactly once, as it is in the constructed one and we have
A = Γ (c, g) = c · (g + c) (by Definition 7 c), Theorem 5).
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Fig. 10. C(4, 3, 3, 3) represented as regular cycloid.
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Using this value of cyc, and the parameters α = g, β = c and A we can apply
Theorem 19:

case: g = α > β = c: γ mod g = α·cyc−A
α−β = g·2·c−c·(g+c)

g−c = c, where γ = c is

a solution and δ = 1
α (A− β · γ) = 1

g (c · (g + c)− c · c) = c.

case: g = α < β = c: γ mod c = β·cyc−A
α−β = g·2·c−c·(g+c)

g−c = c, where γ = c is

a solution and δ = 1
α (A− β · γ) = 1

g (c · (g + c)− c · c) = c.

case: g = α = β = c: γ = δ = b cyc2 c = c. ut

The cycloid C(4, 3, 3, 3) from Figure 8 is an example for Theorem 29. In
Figure 10 the same cycloid is given but its graph is adapted to the definition of
a regular cycloid. Some regular coordinates, like [s0, a1] and [t1, a1], are added.
One of the rm-cycles is highlighted. It has the length rm = 2 · c = 2 · β = 6.

Also in the next theorem the length rm of the release message cycle is im-
portant to determine cyc. Here we will obtain rm = p + (c − g) and cyc =
min{p, rm} = p if c ≥ g. The case c < g is solved by symmetry considerations.

Fig. 11. The release message cycle in C(g, c, g·c
∆
, g·c
∆

) with g
∆

= 2.

Theorem 30. Searching for a regular cycloid meeting the specifications of a cir-
cular traffic queue tq-2(c, g) (Definition 6) the cycloid C2(g, c) := C(g, c, g·c∆ , g·c∆ )
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Fig. 12. C(2, 3, 6, 6) represented as a regular cycloid.
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can be deduced. It has a process length p = g
∆ (g + c) and minimal cycle length

cyc =

{
p = g

∆ (g + c) if c > g
c
g · p = c

∆ (g + c) if g ≥ c (in accordance with Lemma 27 a) and b)).

Proof. The proof is the same as for Theorem 29 until the computation of the
length of the rm-chain. Due to the increased length of processes the rm-chain
cannot be closed as in this case. By the specification of Definition 7 the transition
system of tq-2(c, g) is a composition of g

∆ copies of the transition system of
tq-1(c, g). This is schematically shown in Figure 11 for the case g

∆ = 2. At full
arcs one place is omitted. At dotted arcs with label λ a number of λ transitions
is supposed (including beginning and end of the arc). For the upper copy the the
rm-chain from transition a via transitions b and c to d cannot be closed, but is
continued to the lover copy. To this end a number g− 1 of additional transitions
are to be passed. From e via f the rm-chain is closed to complete a rm-cycle.
In the general case the structure of the upper copy is repeated a number of g

∆
times. Hence, for the overall length of the rm-cycle is the number of transitions
on a path from transition a to transition f by repeating the path from b to d
a number of g

∆ − 1 times: rm = (c − 1) + ( g∆ − 1) · (c + 1 + g − 1) + c + 1 =
g
∆ · (g + c) + (c − g) = p + (c − g). If c ≥ g the length of the rm-cycle is not
smaller than the process-length p, which is the minimal cycle in this case, hence
cyc = g

∆ · (g + c). The model tq-2(c, g) is symmetric with respect to c and g.
The same proof can be made with c and g interchanged and cyc = c

∆ · (g + c) if
c ≤ g. For the value of A = Ξ(c, g) we argue as in the proof of Theorem 29.

Using these values of cyc, and the parameters α = g, β = c and A = Ξ(c, g) =
g
∆ · (g + c) · c we can apply Theorem 19:

case: g = α > β = c: γ mod g = α·cyc−A
α−β =

g· c∆ ·(g+c)−
g
∆ ·(g+c)·c

g−c = 0, where

γ = g is a solution and δ = 1
α (A− β · γ) = 1

g ( g∆ (g + c) · c− c · g) = c · ( g+c∆ − 1).

The resulting cycloid is C(g, c, g, c · ( g+c∆ − 1)). By Theorem 14 c) this cycloid is
equivalent to C(α, β, γ+x ·α, δ−x ·β). With x = c

∆−1 we obtain γ′ = γ+x ·α =

g + ( c∆ − 1) · g = g·c
∆ and δ′ = δ − x · β = c · ( g+c∆ − 1)− ( c∆ − 1) · c = g·c

∆ .

case: g = α < β = c: δ mod c = β·cyc−A
α−β =

c· g∆ ·(g+c)−
g
∆ ·(g+c)·c

g−c = 0, , where

δ = c is a solution and γ = 1
β (A− α · δ) = 1

g ( g∆ (g + c) · c− c · g) = g · ( g+c∆ − 1).

The resulting cycloid is C(g, c, g · ( g+c∆ − 1), c). By Theorem 14 b) this cycloid is
equivalent to C(α, β, γ−x ·α, δ+x ·β). With x = g

∆−1 we obtain γ′ = γ−x ·α =

g · ( g+c∆ − 1)− ( g∆ − 1) · g = g·c
∆ and δ′ = δ + x · β = c+ ( g∆ − 1) · c = g·c

∆ .

case: g = α = β = c: γ = δ = b cyc2 c = g·g
∆ . In all cases we obtain

C(g, c, g·c∆ , g·c∆ ). ut

The cycloid C(2, 3, 6, 6) from Figure 12 is an example for Theorem 30. Its
graph is adapted to the definition of a regular cycloid. Some regular coordinates,
like [s0, a1] and [t1, a1], are added. One of the rm-cycles is highlighted. It has
the length rm = p+ (c− g) = 10 + (3− 2) = 11.
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4.3 Isomorphisms

While in Section 4.2 the synthesis of cycloids as models of circular traffic queues
from the specification has been described the next section is dedicated to anal-
ysis. We will prove that the obtained cycloids are behaviour equivalent to the
circular traffic queues. This is done using operational semantics, i.e. comparing
the transition systems.

Theorem 31. a) The reachability graph of the cycloid system (C1(g, c),M0) :=
C(g, c, c, c,M0) is isomorphic to the labelled transition system LTSp(c, g)
(p = n = c + g), where M0 and ind0 are the regular initial marking and
state, respectively.

b) The reachability graph of the cycloid system (C2(g, c),M0) := C(g, c, g·c∆ , g·c∆ ,M0)
is isomorphic to the labelled transition system LTSp(c, g) (p = g

∆ · n =
g
∆ · (c + g)), where M0 and ind0 are the regular initial marking and state,
respectively.
In both cases the same holds for the standard initial marking.

Proof. The reachability graph RG(N,M0) = (R(N,M0),→) of the cycloid can
be seen as a labelled transition system LTS′ = (States′, T ′, tr′, ind′0). Each
marking contains the same number n = g + c of marked places as this holds in
the initial marking of the T-net. Therefore we also consider such a marking as
an ordered set by an index function ind′ : {1, · · · , n} → S, where S is the set of
places.

The labelled transition systems LTS := LTSp(c, g) and LTS′ are isomorphic
if there are bijective mappings ϕ and ψ. ϕ gives for each state ind ∈ States a
corresponding state ind′ = ϕ(ind) ∈ States′ and ψ gives for each transition
t ∈ T a corresponding transition t′ = ψ(t) ∈ T ′. The following condition is
required: (ind1, t, ind2) ∈ tr ⇔ (ϕ(ind1), ψ(t), ϕ(ind2)) ∈ tr′. The cycloids of
the theorem are regular by Theorem 23 and we can use its regular coordinates
(Definition 24, Lemma 25). In the remaining proof, all indices containing i are
understood modulo n in a) and modulo p in b). All indices containing j are
understood modulo c.
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Part a) of the theorem: As r = 1 in this case, we can use C instead of Cr,
since 0 is the only possible exponent in aij .

i) Definition of ϕ and ψ.
IfRG andRG′ are the sets of reachable states of LTS and LTS′, respectively,
then the corresponding states and markings are defined by index functions
ind and ind′. Using ind the mapping ϕ is given by defining the corresponding
ind′. Recall that following Definition 24 the places have names of the form
[si−1, aj ] representing traffic item aj in position i and [s′i, aj ] representing
the release message from transition [ti, aj ] (Figure 14).

For 1 ≤ i ≤ n let be ind′(i) := [ŝi, next(i)] with ŝi =

{
si−1 if ind(i) ∈ C
s′i if ind(i) ∈ G

where next(i) = a if ind(i) = a ∈ C. If ind(i) = u ∈ G consider, starting in
i, the following modulo-n-unfolded sequence of indexed state components of
length n:
ind(i)ind(i+ 1) · · · ind(n)ind(1) · · · ind(i− 1).
If ui1ui2 · · ·uik ∈ G+ is a maximal block of elements from G starting in
ind(i) = u = ui1 then define: next(i) := ind((k + 1)modn) ∈ C.
Hence, if ind(i) = aj ∈ C then next(i) = aj and ind′(i) = [si−1, aj ]. How-
ever, if ind(i) ∈ G then next(i) = aj ∈ C which is the first aj ∈ C after
position i and ind′(i) = [s′i, aj ].
In the word form a state (as described following Definition 1) can be rep-
resented as word of length n in the form u1u2 · · ·ura1ur+2 · · ·ur′a2ur′+2 · · ·
where ui =× is in position i. The image by the mapping ϕ is
[s′1, a1][s′2, a1] · · · [s′r, a1][sr, a1][s′r+2, a2] · · · [s′r′ , a2][sr′ , a2][s′r′+2, a3] · · · . Note
that a1 and a2 are at positions r+1 and r′+1, respectively. On top of Figure
13 the case for a state of length n = 7 is shown. Below its image under ϕ is
given together with a fragment of the cycloid C(4, 3, 3, 3).
The mapping ψ(〈〈ti, aj〉〉) = [ti, aj ] ψ is obviously injective and also surjective
as LTS := LTSp(c, g) has a number of Γ (c, g) = c · (c + g) transitions
(Theorem 5) as well as (C(g, c, c, c),M0) with A = g · c+ c · c.

ii) (s1, t, s2) ∈ tr⇒ (ϕ(s1), ψ(t), ϕ(s2)) ∈ tr
′
.

A transition from a state component [i, aj ] implies that a traffic item aj in
position i is moving to position i+1. This is possible if position i+1 is free (see
Figure 14). Hence two positions are involved: ind(i)ind(i+1) = aj×and this
is changed by transition [ti, aj ] to ind(i)ind(i+ 1) =×aj . With the mapping
ϕ, as defined in i), we obtain that ind′(i)ind′(i+ 1) = [si−1, aj ][s′i+1, aj+1] is
changed to ind′(i)ind′(i+1) = [s′i, aj ][si, aj ]. This is exactly the modification
performed by the transition [ti, aj ] in the regular cycloid, as by Definition
24 this transition has the output places {[si, aj ], [s′i, aj ]} and by Lemma 25
the input places {[si−1, aj ], [s′i+1, aj+1]}.
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Fig. 13. Example for the bijections ϕ and ψ in the proof of part a) of Theorem 31.
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Fig. 14. See proof of Theorem 31, part a)

iii) (s1, t, s2) /∈ tr⇒ (ϕ(s1), ψ(t), ϕ(s2)) /∈ tr′.
A move of a traffic item aj at position i is impossible if and only if at po-
sition i + 15 is a traffic item ai+1. This traffic item cannot have a move if
there is a traffic item at position (i+2) mod n. Any case, there is a sequence
ajaj+1, · · · , aw without gaps in between, but a gap at position (w+1) mod n.
By the map ϕ this corresponds to the following sequence of transitions and
places in the cycloid:
[ti, aj ][s

′
i+1, aj+1], · · · , [tv mod n, aw mod c][s

′
(v+1) mod n, a(w+1) mod c]

In this sequence all but the last place are unmarked and the last place
[s′(v+1) mod n, a(w+1) mod c] is marked. The sequence is part of the release mes-

sage chain of Figure 9. Since the cycloid is live and save (Theorem 21) the
chain is part of a cycle with exactly one token, which implies that [s′i+1, aj+1]
is unmarked. Transition [ti, aj ] cannot occur since it has [s′i+1, aj+1] as a in-
put place.

iv) Initial state. By Definition 1 the regular initial state of tq-1(c, g) is given
by ind(i) = ai for 1 ≤ i ≤ c and ind(i) = gi for c < i ≤ n. Applying the
mapping ϕ we obtain ind′(i) = [si−1, ai] for 1 ≤ i ≤ c and ind′(i) = [s′i, a1]
for c < i ≤ n. Hence, for 1 ≤ i ≤ c traffic item ai is in position i and for
c < i ≤ n there is a gap and the next traffic item modulo n is a1.
A standard initial state of a circular traffic queue with gaps has been defined
in Definition 3 by the form ind(1)ind(2) · · · ind(n) = a1×r1a2×r2 · · · ac×rc with
ai ∈ C,G = {×} and ri = |{ x ∈ N | i−1 < c

g ·x ≤ i}| for 1 ≤ i ≤ c . We have
to prove that this meets Definition 15 of a standard initial marking of the
cycloid. The parameter i in the definition of ri takes the role of η-coordinate
in the corresponding fundamental parallelogram of the cycloid, but taken in

5 Recall the convention that all indices containing i are understood modulo p and all
indices containing j are understood modulo c.
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negative form. Nothing is changed in the definition of ri, if we substitute
the bound variable i by −η and the bound 1 ≤ i ≤ c by −1 ≤ η ≤ −c.
To reach Definition 15 we also substitute the parameters g, c and x by the
general cycloid parameters α, β and ξ, respectively. As a result we obtain
−η − 1 < β

α · ξ ≤ −η which is equivalent to the definition of the backward
places s←ξ,η ∈ S←1 of M0 in Definition 15: βξ+αη ≤ 0 ∧ βξ+α(η+ 1) > 0.
As in this definition the bound −1 ≤ η ≤ −c is omitted and is replaced
by the quotient /≡. The standard initial state is completely determined by
the distribution of the gaps by the definition of the ri. The same holds
for the cycloid. In fact, the definition of the forward places s→ξ,η ∈ S→1 is
unambigously deducible from the definition of the backward places s←ξ,η ∈
S←1 .

Part b) of the theorem:

Let us first recall some modulo-identities and notations:

a) (a ⊗ b)modn = (amodn ⊗ bmodn)modn for ⊗ ∈ {+,−, ·}
b) z mod p = z − p · b zpc
c) If 0 < z ≤ p then −z mod p = −z − p · b−zp c = −z + p · d zpe = p− z
d) z mod p = r is also notated as z ≡ r (mod p)

e) (z + k)mod p = z mod p for all k ∈ N, z ∈ Z

In this part we start with a labelled transition system LTSp(c, g) (Definition
6) with r = g

∆ and p = r · n.

i) Definition of ϕ and ψ. In particular two enhancements are to be per-
formed: the extension of the set of transitions and the introduction of traffic
items uj ∈ G. The first one is inherited from LTSp(c, g) by ψ(〈〈ti, aj〉〉) =
[tv, aj ] with v = k · n+ i when aj in position i is moved. The latter is done
by replacing in s′i the (anonymous) apostrophe by uj in the form s

uj
i Thus

we obtain the form s
uj
i , as shown in the example in top of Figure 15. It is

important to note that two different traffic items uj , uk ∈ G never share the
same place in C(g, c, g·c∆ , g·c∆ ,M0). This property holds since α = g is a divisor
of γ = g·c

∆ and is proved as the corresponding relation for regular cycloids
where β|δ. A naming by s

uj
i indicates a typing of this place by the traffic

item uj or by transformation to the dual cycloid. This property of cycloids
can be called backward-regular. The length of such backward processes is
p′ = A

g = c
∆ (g+ c). Therefore the traffic items from G need c

∆ rounds before
reaching the initial state again. To trace the history of such traffic items we
use an attribute x in the form uxh. Traffic item uh, 1 ≤ h ≤ g starts with
x = c+h, as c+h is its position in the regular initial marking and continues

counting downwards uc+hh , uc+h−1h , uc+h−2h , · · ·u0h, · · · down to u−p
′+c+h

h and

then is reset to uc+hh and repeats. This done by the following modification
of the transition rule in Definition 6:
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(ind1, [tv, a
k
j ], ind2) ∈ tr ⇔

∃ i ∈ {1, · · · , n} : v = k · n+ i ∧
ind1(i) = akj ∈ Cr ∧ ind1((i+ 1)mod n) = uxh ∈ G ∧

ind2(i) = ux
′

h with if x′ = c+ h− (p′ − 1) then c+ h else x− 1 ∧
ind2((i+ 1)mod n) = akj if i 6= j else ak+1

j ∧
ind2(l) = ind1(l) for all l /∈ {i, (i+ 1)mod n}

(5)

and the regular initial marking to ind(i) = ai for 1 ≤ i ≤ c and ind(i) = gii−c
for c + 1 ≤ i ≤ n. Adding this attribute results in an isomorphic transition

system since a number of p′ = Ξ(c,g)
g = c

∆ · (c + g) counter values is dis-

tributed on an at least as large path of length Ξ(c, g) ≥ p′ in the transition
system (Theorem 5). The mapping ϕ is defined by extending the correspond-
ing definition in part a):
For 1 ≤ i ≤ n let be ind′(i) := [ŝi, next(i)] with

ŝi =

{
s(v−1)mod p if ind(i) = akj ∈ C
sxρh(x) if ind(i) = uxh ∈ G

where v = k ·n+ i and next(i) is de-

fined as before. The (partial) function ρh(x) determines the place [suhρh(x), aj ]

(for some j) of traffic item uh ∈ G after x steps when starting in its initial
position [suhρh(c+h), aj ] in the standard initial marking.

In the case h = 1 the partial function ρ1(x) is defined on a number of p′

values c+1, c, c−1, c−2, · · · , 1, 0,−1, · · ·−p′+c+2. The place [su1

ρ1(c+1), a1],

corresponding to the first of these arguments, is the backward input place of
transition [tc, ac]. Hence by Corollary 26 this place is [su1

p−α+1, a1], where the
apostrophe is replaced by u1. Therefore ρ1(c + 1) = p − α + 1 with α = g.
The next place of u1 (determined by ρ1(c)) is [tβ , aβ ]← = [sβ , aβ ] = [su1

c , ac]
and therefore ρ1(c) = c.
Now let us recompute the difference between these two values modulo p. By
identity a) we obtain: ρ1(c) − ρ1(c + 1) ≡ cmod p − (p − g + 1)mod p ≡
(c − (p − g + 1)) ≡ (c + g) − p − 1 ≡ n − p − 1(mod p). As p − n + 1 < p
we obtain n − p − 1mod p = −(p − n + 1)mod p = p − (p − n + 1) = n − 1
(identity c). We call this (positive) difference in the value a huge hop.
The next c− 1 values are ρ1(c− 1) = c− 1, ρ1(c− 2) = c− 2, · · · ρ1(1) = 1.
Each of these (negative) differences is called a small hop. The corresponding
places are [su1

c−1, ac−1], [su1
c−2, ac−2], · · · , [su1

1 , a1]. We call this subsequence a
round, which starts with a huge hop in the values of ρ followed by c−1 small
hops. The total difference of a round is ρ1(1) − ρ1(c + 1) = (n − 1) + (c −
1) · (−1) = n − 1 − c + 1 = g + c − c = g. As there are p′

c rounds the total

difference is (p
′

c · g)mod p = (Ag ·
1
c · g)mod p = (Ac )mod p = pmod p = 0 and

the initial value is reached again.
Next we prove a compact formula for ρh for the position of traffic item
gh ∈ G, referring to the special case ρ1(x):
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ρh(x) = (ρ1(x− (h− 1)) + (h− 1) for 1 ≤ h ≤ g)mod′ p and
ρ1(x) = (( 1

c (n · (xmod′ c)− g · x)mod p
for c+ 1 ≥ x > −p′ + c+ 2, 1 ≤ h ≤ g.
The function xmod′ c is similar to xmod c, but returns c when xmod c = 0:

xmod′ c =

{
c if xmod c = 0
xmod c otherwise

We prove the formular for h = 1. Due to the periodic values of the function
ρ1 its arguments x are parametrized by k and i in the form x = c+1−k ·c−i
with 0 ≤ k < p′

c and 0 ≤ i < c. Due to the modified function mod′ there are
two cases to distinguish for ρ1:
a) case i = 0

ρ1(x) ≡ ρ1(c+ 1− k · c) ≡
(( 1
c (n · ((c+ 1− k · c)mod′ c)− g · (c+ 1− k · c)) ≡

(( 1
c (n · (1mod′ c)− g · (c+ 1− k · c)) ≡

(( 1
c ((g + c) · 1− g · c− g + g · k · c)) ≡

(( 1
c (c− g · c+ g · k · c)) ≡

1− g + g · k (mod p)
b) i 6= 0

ρ1(x) ≡ ρ1(c+ 1− k · c− i) ≡
(( 1
c (n · ((c+ 1− k · c− i)mod′ c)− g · (c+ 1− k · c− i)) ≡

(( 1
c (n · ((1− i)mod′ c)− g · (c+ 1− k · c− i)) ≡∗)

( 1
c ((g + c) · (c− i+ 1)− g · c− g + g · k · c− i) ≡

1
c (c · c− c · i+ c+ g · k · c) ≡
c− i+ 1 + g · k (mod p)
In case of the congruence ≡∗) there are two subcases
b1) : i 6= 1 and b2) : i = 1:
for b1) since i < c we obtain (1 − i)mod′ c = (1 − i)mod c = −(i −
1)mod′ c = c− i+ 1
for b2) since i = 1 we obtain (1− i)mod′ c = 0mod′ c = c = c− i+ 1

With these two results we prove that values of ρ1(x) are characterized by a
first hop of n− 1 (after the initial value, as shown above) followed by c− 1

hops of −1. This sequence is repeated p′

c times.
There are three cases to be distinguished:
I) Step from i = 0 to i = 1: A huge hop of n− 1 is to be proved:
ρ1(c+1−k ·c−1)−ρ1(c+1−k ·c) = c = c−1+1+g ·k−(1−g+g ·k) =
c− 1 + g = n− 1.

II) Step from i to i + 1 for i ∈ {1, · · · , c − 2}: A small hop of −1 is to be
proved: ρ1(c + 1 − k · c − (i + 1)) − ρ1(c + 1 − k · c − i) = c − (i + 1) +
1 + g · k − (c− i+ 1 + g · k) = −1

III) Step from i = c − 1 to i = 0 while k is incresed by 1: A small hop
of −1 is to be proved: ρ1(c + 1 − k · c − (i + 1)) − ρ1(c + 1 − k − i) =
1−g+g·(k+1)−(c−(c−1)+1+g·k) = 1−g+g·k+g−c+c−1−1+g·k = −1.

In top of Figure 15 a state of LTS28(3, 4) and C(4, 3, 12, 12) are given. For
the partial state ind(2) = a11, hence k = 1, i = 2, by the map ϕ we obtain
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Fig. 15. Example for the bijections ϕ and ψ in the proof of part b) of Theorem 31.
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ind′(2) = [s(v−1)mod p, a1] = [s8, a1] since v − 1 = k · n+ i− 1 =

1 · 7 + 2− 1 = 8. Similarily, for ind(3) = u−41 we obtain x = −4 in ρ1(−4) =
( 1
3 (7 · (−4mod′ 3)−4 · (−4)))mod 28 = (1

3 (7 ·2−4 · (−4))mod 28 = 10 which
defines the place [su1

10 , a2]. The cycloid is given in Figure 17 together with
all values of ρh. In the net the path for u4 corresponding to ρ4 is marked by
a particular colour of the net elements and bold arrows. Places like [su4

24 , a1]
are represented as [s24-u4,a1].

ii) (s1, t, s2) ∈ tr⇒ (ϕ(s1), ψ(t), ϕ(s2)) ∈ tr
′
.

A transition from a state component ind(i) = akj implies that a traffic item

akj in position i is moving to position i+ 16. This is possible if position i+ 1
is occupied by a traffic item uxh ∈ G (see Figure 16). Hence two positions are
involved: ind(i)ind(i + 1) = akju

x
h and this is changed by transition [tv, a

k
j ]

to ind(i)ind(i+ 1) = ux
′

h a
k
j or ind(i)ind(i+ 1) = ux

′

h a
k+1
j where x′ is defined

in equation 5.
With the mapping ϕ, as defined in i), we obtain that ind′(i)ind′(i + 1) =
[sv−1, aj ][s

uh
ρ(x), aj+1] is changed to ind′(i)ind′(i+ 1) = [suhρ(x′), aj ][sv, aj ]. We

have to prove that this is the modification performed by the transition [tv, aj ]
in the regular cycloid, as by Definition 24 this transition has the output places
{[sv, aj ], [suhv , aj ]}, where the attribute uh replaces the apostrophe and by
Lemma 25 the input places {[sv−1, aj ], [suhv+1, aj+1]}.
Hence it remains to prove that the indices v of tv and ρ(x) are consistent.
Formally in the case of u1 (the other cases are similar) we have to prove that

[tv, aj ]
← = [su1

ρ(x), aj ] ⇒ ρ(x) = v (6)

We first prove the following fact. If a transition [tv, aj ] exchanges aj with
uh the next time in the same process [tv′ , aj ] exchanges aj with uh is given
by v′ = (v + g)mod p. By Lemma 25 the index v is reduced a number of
β − 1 times by 1 and once increased by α + β − 1. In total we obtain :
v′ = v + (α + β − 1) − (β − 1) = v + α = v + g. By this intermediate
fact for a fixed traffic item aj it interchanges with u1 by the transitions
[tj , aj ], [tj+g, aj ], [tj+2·g, aj ], · · · , [tj+( p

′
c ·g)mod p

, aj ] = [tj , aj ]. The implica-

tion (6) is proved by induction on this sequence:
Induction Basis: For [tj , aj ] we have [tj , aj ]

← = [su1
j , aj ] and therefore ρ(x) = ρ(j) =

j. x = j holds as the counter x is initiated with x0 = c + 1 and is
decremented c− j + 1 times, hence x = c+ 1-(c-j+1) = j

Induction Hypothesis: [tj+r·g, aj ]← = [su1

ρ(x), aj ] ⇒ ρ(x) = j + r · g
Induction Step: [tj+(r+1)·g, aj ]← = [su1

ρ(x), aj ] ⇒ ρ(x) = j+ (r+ 1) · g It has been proved

before that by a round the value of ρ(x) is increased by g. Therefore
ρ(x) = j + r · g + g = j + (r + 1) · g

iii) (s1, t, s2) /∈ tr⇒ (ϕ(s1), ψ(t), ϕ(s2)) /∈ tr′.
In this part all indices containing i, j, h, v are understood mod p, mod c,
mod g, mod p respectively. A move of a traffic item aj at position i is impos-
sible if and only if at position i + 1 is a traffic item ai+1. This traffic item

6 modn is omitted here and in the following.
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cannot have a move if there is a traffic item at position i+2. Any case, there
is a sequence ajaj+1, · · · , aw without gaps in between, but a gap at position
(w + 1) mod n. By the map ϕ this corresponds to the following sequence of
transitions and places in the cycloid:
[tv, aj ][s

uh
v+1, aj+1], · · · , [tv+r, aj+r][s

uh+r
(v+r+1) mod n, aj+r+1]

In this sequence all but the last place are unmarked and the last place is
marked. The sequence is part of the release message chain of Figure 9. Since
the cycloid is live and save (Theorem 21) the chain is part of a cycle with
exactly one token, which implies that [suhv+1, aj+1] is unmarked. Transition
[tv, aj ] cannot occur since it has [suhv+1, aj+1] as a input place.

iv) Initial state.

The proofs respective to initial markings are the same as in part a) as the
initial partes of the cycloids are the same. ut

Fig. 16. See proof of Theorem 31, part b)

In Figure 18 by C(4, 6, 12, 12) an example of a cycloid is given with ∆ = 2.
Its parameters are A = 120, cyc = p = 20, rm = 22.



34

foo

Fig. 17. Cycloid C(4, 3, 12, 12) with regular coordinates.
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Fig. 18. Cycloid C(4, 6, 12, 12) with ∆ = 2.
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4.4 Representations of circular queues by T-Nets and Coloured
Nets

In Figure 19a) Petri’s queue of cars is represented as a net with a regular initial
marking. The positions of a number of c cars are represented by black tokens
in the places s0, · · · , sc−1, followed by g tokens in the complementary places
s′c+1, · · · , s′c+g representing the gaps. By the complementary places the net is
safe and the cars cannot pass each other.

Fig. 19. Nets of circular traffic queues a) Nbasic(c, g) b) Ncoul(c, g) and c) Nsym(c, g).

They cannot be distinguished by their identifiers, which is different in part b)
of Figure 19, where the cars have identifiers a1, · · · , ac. To handle such individual
tokens a coloured net is used containing a variable x. As shown, the net has the
behaviour of a circular traffic queue with gaps tq-1(c, g).

In the next step in Figure 19c), a circular traffic queue tq-2(c, g) is modelled
by replacing the undistinguishable gap tokens in s′c+1, · · · , s′c+g by identifiers
u1, · · · , ug.

Definition 32. a) A basic tq-net Nbasic(c, g) = (S, T, F,M0) is defined as
follows by using the abbreviation p := c+ g (see Figure 19 a):
S := {s0, · · · , sp−1}∪{s′1, · · · , s′p}, T := {t1, · · · , tp} and F := F 1∪F 2∪F 3∪
F 4 where F 1 := {(si, t(i+1)mod p)|0 ≤ i < p}, F 2 := {(ti, simod p))|1 ≤ i ≤ p},
F 3 := {(s′i, t(i−1)mod p))|1 ≤ i ≤ p}, F 4 := {(ti, s′i)|1 ≤ i ≤ p},
M0 := {s0, · · · , sc−1} ∪ {s′c+1, · · · , s′p}

b) In a coloured tq-net Ncoul(c, g) = (S, T, F, var,M0) the sets S, T and F are
defined as in part a), but var(F1 ∪ F2) := x, M0(si) = ai+1 for 0 ≤ i < c
and M0(s′i) = • for c < i ≤ p (see Figure 19 b).
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c) In a symmetric coloured tq-net Nsym(c, g) = (S, T, F, var,M0) the sets S, T
and F are defined as in part a), but var(F1 ∪ F2) := x, var(F3 ∪ F4) := y,
M0(si) = ai+1 for 0 ≤ i < c and M0(s′i) = vi for c + 1 ≤ i ≤ p (see Figure
19 b).

As we are interested in modelling traffic queues by T-nets we give a behaviour
preserving transformation of such coloured tq-nets into T-nets. An almost stan-
dard construction of such a transformation into nets works as follows: for each
place s of Ncoul and coloured token a a new place [s, a] is created, simulating the
token a to be located in the place s of Ncoul. In a similar way, for each transition
t of Ncoul and coloured token a a new transition [t, A] is created, simulating
the token a to be moved by the transition t of Ncoul. Places with a black token
as colour set are treated accordingly. This leads to the following Definition (see
Figure 20 a)).

Fig. 20. Transformation of a coloured tq-net

Definition 33. For a coloured tq-net Ncoul(c, g) = (S, T, F, var,M0) a net N0(c, g) =
(S0, T0, F0,M

0
0 ) is defined as follows: p := c+ g

S0 := ({s0, · · · , sp−1}×C)∪{s′1, · · · , s′p}, where C = {a1, · · · , ac} is set of cars,
T0 := T × C,
F0 := F 1

0 ∪ F 2
0 ∪ F 3

0 ∪ F 4
0

F 1
0 := {([si, aj ], [t(i+1)mod p, aj ])|0 ≤ i < p, 1 ≤ j ≤ c},
F 2
0 := {([ti, aj ], [simod p, aj ])|1 ≤ i ≤ p, 1 ≤ j ≤ c},
F 3
0 := {(s′i, [t(i−1)mod p, aj ])|1 ≤ i ≤ p, 1 ≤ j ≤ c},
F 4
0 := {([ti, aj ], s′i)|1 ≤ i ≤ p, 1 ≤ j ≤ c},
M0 := {[si, ai]|0 ≤ i < c} ∪ {s′i|0 < i ≤ p}

The net from Definition 33 is not a T-net (see Figure 20 a)). It can be easily
transformed by observing the specification of a circular traffic queue of Definition
7 b): Each traffic item a ∈ C can make a step from position i ∈ {1, · · · , n} to
position (i+ 1) mod n, if it has received a permit signal from a gap in position
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(i+1) mod n. After this step the traffic item is in position i. Hence, by replacing
the place s′i in Figure 20 a) by copies [s′i, aj ] (1 ≤ j ≤ c), but omitting the arcs
([ti, aj−1], s′i) and (s′i, [ti−1, aj ]) as shown in Figure 20 b) we obtain a T-net, with
the same behaviour. It is formally given in Definition 33 and is identical to the
regular net of Definition 24 and Lemma 25 with process length p = g + c.

Definition 34. For a coloured tq-net Ncoul(c, g) = (S, T, F, var,M0) a net N1(c, g) =
(S1, T1, F1,M

0
1 ), called T-net-equivalent of Ncoul(c, g), is defined as follows:

p = c+ g, S1 := S × C and T1 := T × C where C = {a1, · · · , ac} is set of cars,
F1 := F 1

1 ∪ F 2
1 ∪ F 3

1 ∪ F 4
1

F 1
1 := {([si, aj ], [t(i+1)mod p, aj ])|0 ≤ i < p, 1 ≤ j ≤ c},
F 2
1 := {([ti, aj ], [simod p, aj ])|1 ≤ i ≤ p, 1 ≤ j ≤ c},
F 3
1 := {[(s′i, aj ], [t(i−1)mod p, aj−1mod c])|1 ≤ i ≤ p, 1 ≤ j ≤ c},
F 4
1 := {([ti, aj ], [s′i, aj ])|1 ≤ i ≤ p, 1 ≤ j ≤ c},
M1

0 := {[si, a(i+1)mod c]|0 ≤ i < c} ∪ {[s′i, a1]|p− g + 1 ≤ i ≤ p}

Theorem 35. The T-net-equivalent of Ncoul(c, g) from Definition 34 is isomor-
phic (with identical names) to the regular cycloid of Definition 24 and Lemma
25 with process length p = g + c. By Theorem 29 it is also isomorphic to the
cycloid C(g, c, c, c).

Proof. The identical forms of the net from Definition 34 and of the regular
cycloid of Definition 24 and Lemma 25 with process length p = g + c can
be immediately checked (also compare with Figure 14). By the parameters
of this cycloid in Theorem 29 it is proved to be isomorphic to C(g, c, c, c).
As the places s0, s1, · · · , sc−1 are marked by a1, a2, · · · , ac in Ncoul(c, g) the
same holds for [s0, a1], [s1, a2], · · · , [sc−1, ac] in N1(c, g). In the same way, as
the places s′c+1, s

′
c+2, · · · , s′c+g are marked in Ncoul(c, g) the same holds for

[s′p−g+1, a1], [s′p−g+2, a1], · · · , [s′p, a1] in N1(c, g). Note that p − g + 1 = g + c −
g + 1 = c+ 1. As before, for black tokens, we have a different construction rule:
a1 is the second component, since the token represents the release message of
a1. ut

The construction of the T-net-equivalent of Nsym(c, g) is similar to the preceding
one. It is equivalent to the g

∆ -fold iteration of C(g, c, c, c) (see Section 5). Within
each copy of C(g, c, c, c) the construction is identical to Definition 35. At the
borders the corresponding equivalent place is chosen, instead.

Definition 36. For a coloured tq-net Nsym(c, g) = (S, T, F, var,M0) a net N2(c, g) =
(S2, T2, F2,M

0
2 ), called T-net-equivalent of Nsym(c, g), is defined as follows:

S2 := S × C ×D and T2 := T × C ×D where C = {a1, · · · , ac} is set of cars,
D = {k ∈ N|0 ≤ k < g

∆} and p̃ = c+ g,
F2 := F 1

2 ∪ F 2
2 ∪ F 3

2 ∪ F 4
2

F 1
2 := {([si, aj , k], [ti+1, aj , k])|0 ≤ i < p̃, 1 ≤ j ≤ c, 0 ≤ k < g

∆},
F 2
2 := {([ti, aj , k], [si, aj , k])|1 ≤ i < p̃, 1 ≤ j ≤ c, 0 ≤ k < g

∆}
∪{([tp̃, aj , k], [s0, aj , (k + 1)mod g

∆ ]|1 ≤ j ≤ c, 0 ≤ k < g
∆}
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Fig. 21. C(6, 3, 12, 8) with a · b = 3 · 4 copies of C(2, 1, 3, 2) as substructures.

F 3
2 := {[(s′i, aj , k], [t(i−1)mod p̃, aj−1mod c, k])|1 ≤ i ≤ p̃, 1 ≤ j ≤ c, 0 ≤ k < g

∆},
F 4
2 := {([ti, aj , k], [s′i, aj ], k)|1 ≤ i ≤ p̃, 1 ≤ j ≤ c, 0 ≤ k < g

∆},
∪{([tp̃, aj , k], [sp̃, aj , (k + 1)mod g∆ ]|1 ≤ j ≤ c, 0 ≤ k < g

∆}
M2

0 := {[si, a(i+1)mod c]|0 ≤ i < c} ∪ {[s′i, a1]|p− α+ 1 ≤ i ≤ p}

Theorem 37. The T-net-equivalent of Nsym(c, g) from Definition 36 is isomor-
phic to the regular cycloid of Definition 24 and Lemma 25 with process length
p = g

∆ (g+ c). By Theorem 30 it is also isomorphic to the cycloid C(g, c, g·c∆ , g·c∆ ).

Proof. The identical forms of the net from Definition 36 and of the regular
cycloid of Definition 24 and Lemma 25 with process length p = g

∆ (g + c) can
be immediately checked (also compare with Figure 14). For the regular initial
marking the current value of p has to be inserted. By the parameters of this
cycloid in Theorem 30 it is proved to be isomorphic to C(g, c, g·c∆ , g·c∆ ). ut

5 Composition of Cycloids

Using Theorem 12 we next deduce that the equivalence relation ≡ becomes finer
if the cycloid parameters are integer multiples.

Theorem 38. Let C1(α, β, γ, δ) be a cycloid and a, b ∈ N+ such that a is a divi-
sor of α and β as well as b is a divisor of γ and δ. Then the equivalence relation
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Fig. 22. Iteration C(3, 4, 1, 1)[4] ≡ C(3, 4, 4, 4)

≡1 of C1(α, β, γ, δ) is included in the equivalence relation ≡2 of C2(αa ,
β
a ,

γ
b ,

δ
b ),

more precisely ≡1 ⊆ ≡2.

Proof. Let be v = x2 − x1 and π1 and π2 the parameter vector function of C1
and C2, respectively. Then we have to prove that π2(v) ∈ Z2 if π1(v) ∈ Z2. This
is done y the following deduction, where A1 is the area of C1 and A2 = 1

a·bA1 is
the area of C2.

π2(v) = 1
A2

(
δ
b
−γ
b

β
a

α
a

)
v = a·b

A1

(
δ
b
−γ
b

β
a

α
a

)
v = 1

A1

(
a · δ −a · γ
b · β b · α

)
v =

1
A1

(
a 0
0 b

)(
δ −γ
β α

)
v =

(
a 0
0 b

)
1
A1

(
δ −γ
β α

)
v =

(
a 0
0 b

)
π1(v).

Since π1(v) ∈ Z2 by assumption also π2(v) ∈ Z2.

Theorem 38 allows to define iterations of cycloids, both with respect to time
and space, as shown in an example in Figure 21.

Definition 39. For a cycloid C(α, β, γ, δ) and positive integers n,m ∈ N+ the

spaciotemporal iteration is defined by C(α, β, γ, δ)[n][m] := C(m · α,m · β, n · γ, n ·
δ). In particular, C(α, β, γ, δ)[n] := C(α, β, γ, δ)[n][1] is the temporal iteration and

C(α, β, γ, δ)[m] := C(α, β, γ, δ)[1][m] is the spacial iteration.

This allows to characterize the two most importand cycloids of this article
by iterations of the cycloid C(α, β, 1, 1).
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Fig. 23. Cycloid and epicycloid in geometry.

Lemma 40. The iteration C[n](α, β, γ, δ) of a regular cycloid C(α, β, γ, δ) is reg-
ular with process length p[n] = n · p if p is the process length of C(α, β, γ, δ).

Proof. If β is a divisor of δ thean also of n · δ. If A[n] and A are the areas of the

two cycloids then A[n] = α ·n ·δ+β ·n ·δ = n ·A and p[n] = A[n]

β = n·A
β = n ·p ut

Corollary 41. a) The cycloid C1(g, c) = C(g, c, c, c), which is behaviour equiv-
alent to the circular traffic queue tq-1(c, g), is isomorphic to the c-fold tem-
poral iteration of the basic cycloid: C0(g, c)[c] = C(g, c, 1, 1)[c] ' C(g, c, c, c).

b) The cycloid C2(g, c) = C(g, c, g·c∆ , g·c∆ ), which is behaviour equivalent to the
circular traffic queue tq-2(c, g), is isomorphic to the g·c

∆ -fold temporal itera-

tion of the basic cycloid C0(g, c)[
g·c
∆ ] = C(g, c, 1, 1)[

g·c
∆ ] ' C(g, c, g·c∆ , g·c∆ ).

c) The cycloid C2(g, c) is also isomorphic to the g
∆ -fold temporal iteration of

the cycloid C1(g, c)[
g
∆ ] ' C2(g, c).

Figure 22 shows the iteration C(3, 4, 1, 1)[4], which is isomorphic to C(3, 4, 4, 4).

In geometry a cycloid is the curve traced by a point on the rim of a circular
wheel as the wheel rolls along a straight line without slipping ([1], Figure 23 a)).
An epicycloid or hypercycloid is a cycloid in circular form. It is a plane curve
produced by tracing the path of a chosen point on the circumference of a circle,
called an epicycle, which rolls without slipping around a fixed circle ( [2], Figure
23 b)).

In [8] Petri introduces track and clock image of a cycloid: ”To obtain a
perceptual image of the Cycloid, we can paint the parallelogram on a rubber
sheet and form it into a torus, pasting together first the top and bottom sides,
and then the right and left. We call this a track image of the Cycloid: the track is
a line which runs around the torus taking the long distance. If we paste together
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Fig. 24. Track and clock image of the cycloid C(2, 2, 2, 2).

the right and left sides first, we obtain of course the same net topology, but a
different image in R3, called a clock image of the cycloid.” Track and clock image
of the cycloid C(2, 2, 2, 2) from [8] are shown in Figure 24.

Fig. 25. C(2, 2, 2, 2)[3] ' C(2, 2, 6, 6)
represented as epicycloid.

Similar to epicycloids iterated cycloid nets are twofold repetitive structures,
namely repetitive in the component parts as well as in the overall structure.
Hence we obtain an analogy as shown in Figure 25 as a 3-fold iteration
C(2, 2, 2, 2)[3] ' C(2, 2, 6, 6) of the clock image of the cycloid C(2, 2, 2, 2) from
Figure 24.
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6 Summary

The theory of cycloids has been extended by new formal methods and new
results concerning circular traffic queues. The use of matrix algebra has lead
to a more mathematical and easier handling of the cycloid equivalence relation.
Regular cycloids have been shown to be a useful link in the theory. They are
structural near to circular traffic queues, but miss some of the clear mathematical
properties of general cycloids. The proof of isomorphism of circular traffic queues
and special cycloids was facilitated by the use of regular cycloids as a link. The
concept of release message chain and cycle has been introduced. It was found to
be closely connected to the notion of minimal cycle which was so important in
earlier publications on cycloids.

The most important results are summarized in Table 1: the two models of cir-
cular traffic queues tq-1(c, g) and tq-2(c, g), their modelling by cycloids C0(g, c),
C1(g, c) and C2(g, c), the corresponding values of minimal cycles and numbers of
transitions and their representations as iterations of C0(g, c).

Table 1. Summary of some results.

model cycloid minmal cycle cyc no of transitions A iterated cycloid

tq-1(c, g) C0(g, c) = C(g, c, 1, 1) 2 g + c C0(g, c)[1]

tq-1(c, g) C1(g, c) = C(g, c, c, c)
{

2 · c if g ≥ c
g + c if c > g

Γ (c, g) = (g + c)c C0(g, c)[c]

tq-2(c, g) C2(g, c) = C(g, c, g·c
∆
, g·c
∆

)

{
c
∆

(g + c) if g ≥ c
g
∆

(g + c) if c > g
Ξ(c, g) = g

∆
(g + c)c C0(g, c)[

g·c
∆

]
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