ADMINS - A Progress Report

by

David Griffel and Stuart McIntosh

Center for International Studies

Massachusetts Institute of Technology

January 1967

C/67-3

-
o0

Preface

This document is intended to serve as an interim recording
of the work the authors are currently doing, and also to serve as
a back up user manual to the user documentation built into the
ADMINS system. The work is being done under tpe auspices of the
Center for International Studies here at M.I.T. and is supported
by an N.S.F.%* grant for which project Professor Ithiel Pool is
the principal investigator, and is aided by a technical committee
comprised of faculty assoclates Professor James Beshers and
Professor Joseph Weizenbaum. Naturally, &ll of the mistakes the
authors have ﬁade are their own, and of course, without the

facllities of Project MAC the work would not have been possible.

*
Y Grant - Computer apprcachnes for handling large social science
iles.,

T.8.7
data T

CONTENTS LIST

l.a.1-5. Data collection - organization
l.b. Data specification

l.c. System design requirements

l.d. Data types

l.e. Heavily structured data

l.f. Loosely structured data

l.g. Systems analysis - orientation
l.h. Designer, theorizer, etc.

l.i. Organizer, processor, .analyzer
1l.j. Birds eye view - chart.A

l.k. Language for interactive substantive uses
1.1. Specific problems

l.m. General considerations

2.a., Adform

2.b. Organizer

2,c. Processor

2.d. Category records - simple

2.e. Category records - derived

2,.f. Indexes - (trees)

2.g. Information indexes - stat tests

2.h. Complex indexes - (tables) -- classified directory
2.i. Multi-source files

2.j. Multi-level files

2.k, User - control - flow Chart B
2.1. Admin - control - flow Chart C

2.m. Procedural research

3. Organizer - Processor
3.a. Input data
3.c. Organizer - overview
3.d. The adform

3.e. Adform syntax conventions

e

3.f.
3.g.
3.h.
3.1,
3.3.
3.k.
3.1.
3.m.1.
3.m.2.
3.m.3.
3.n.1.
3.n.2.
3.n.4.
3.0.
3.p.
3.q.

4

4.a.
4.Db.
4.c.
4.d.
b4.e.
4.f.
b.g.
4.h.
4.1.
4.7,
4. k.

4.1,
4.m.

5
5.a.

5.b.

Location statements

Audit statements

Descriptive statements

Transformation statements

Contingency statements

Diagnostics

Organizer usage
Processor overview
Processor usage
Processor instructions
Processor output
Marginals
Error report

File inversion

Data alteration

Concatenating files

Analyzer
Analyzer - overview
Analyzer instruction types

File focus

Classified directory maintenance

Set operations

Summarization

Recoding

Multi-level files

Syntax documentation
Analyzer - usage

Analyzer - error comments
Analyzer - storage management

Data manipulation language

Dynamic loops
Organizer - processor loop

Admins binary input

5.c.
5.d.

5.e.

Vertical horizontal .processing
Multi-source files

Multi-level files

&

ADMINS
Administrative Data Methods For Information Naming Systems

l.a.l. Data about the environment is gathered and recorded. This is
usually done according to some purpose. If many different types
of record are generated, it becomes necessary to keep a record

(meta data - bibliographic data) of the data records.

l.a.2. Some other institution may acquire from many different original
generaters, their.data records and even perhaps their meta data
records. The problem confronting this institution will, dependent
on its collection.oriented purpose, be that of organizing the
variety of data records it has now acquired by means of its own
meta data record. (which may or may not rest on the originators'

meta data records).

l.a.3. This institution. has a further problem. Any organization of the
record must be.capable of re-organization to support a user ori-
ented purpose.which need only be stated in general but must be

supported in any particular case.

l.a.4. As records are always embodied in some media which has a con-
straining effect we are concerned to design procedures using a
flexible media (a disk oriented, time shared coﬁbuter facility)
which are effective on data records and meta data records where
we have no control over the input conventions, i.e. we did not
gather the gathered data, our selection is restrained to that

which we choose to acquire.

l.a.5.

Administrative._Data Methods are quite well understood in the areas
of business management and public administration. Information
naming methods..are.quite well known in the areas of Librarianship
and Technical Documentation. What is not self evident is how to
design an infovmation system that does both, embodied in a third
generation computer facility that will be used by socialsstdan-

tists who have a dynamic view of data.

As methods by which one derives a norm from data are perhaps
more difficult to make completely public than are methods for
classifying data under & noim, the public and explicit statements
ebout data are ordinarily of the type that this data has been
coded and categorized under that norm. Thus the systemic aspects
of an information handling design is the activity that makes
explicit what it means by data, e.g., actual or bibliographic.
What are data entries, data categories, data items, data files.
What are the ordering relations of each of these elements.

What data ought to flow where under what norms. What are the
functional sub systems, what different kinds of data flow do
they handle., How do they relate to the overall system, and how
does the information handling system interface with its environ=-

nent?

c

This abstraction called a system may be said to be worksble
when it can adapt to the vagaries of the data it has been designed
to handle and also, when 1t can accomodate to and eventually
assimilate the changing purposes of its users. Thus the system
must not only be able to process data under its norms, it must be
such that one can change its noxms based on date experience. If
the system is to be designed to accomodate one particular appli~
cation problem, it is conceivable that the fitting together of a
congerie of components on a trial and error basis will provide an
adequate solution. When the application is a data management
systen to support user applications in areas as yet unspecified
and with substantive data as yet unknown, the practical approach
is to proceed on a trial and error basis only within a framework
where the system relationships are made public and explicit at
all levels of system function. This will enable the input from
one sub system to tske the output of another sub system without
the aid of prayer, chewing gum and string. Even so, one cannot
design an adequate data management system without some experience
in adapting to many substantive problem descriptions. Nor can one
accomodate a flexible data management system to a new application,
unless there is an adequate substantive problem description of this

new application.

iy

1.

We are of course only concerned with systems for administering
information but even so this can be quite complex. There are
different types of data, different embodiments of the data, differ-
ent ways of naming the data. The data can be what we will call
actual data, i.e., data on the substantive and methodological
aspects of the environment that the system has been designed to
collect date about. The actual data can be information data
where interpretations of this data are essentially linguistic, vis
a vis what the data is pointing at in the environment, and ambig-
uities lie in the province of the philosophy of language. The
actual data can also be scientific data where interpretation of
this data are essentially scientific vis a vis theory, and il
ambiguities lie in the province of the philosophy of science.

The data, however, may not be actual data but bibliographic data,
i.e., data which describes the physical embodiment of the actual
data record and in broadly logical terms describes the form and
content of the actual data record. Interpretations of biblio-
grephic data are essentially meta-linguistic, i.e., we have a
language for pointing at actual data which is also in a language.
There are of course plenty of naming confusions possible. The
neme 'occupation' can be the name in a catalog describing the
content of a codebook prototype norm. The same name may be &
category of a codebook describing a data record of actual
information or scientific data. A data management system has to
avoid both the following options. It can address itself to trivial
clerical tasks and give a user little intellectual assist. It can
address itself to intellectual tasks but the results of its opera=-
tions are so esoteric that only members of the cult can live with

the constraints.

e

Actual data and bibliographic data can both be heavily
structured, i.e., the norm under which the data is to be
processed can be designed such that the possible entries under
a category can be made explicit and the relationships of a
category within an item can also be made explicit. Finally,
these items, e.g., a catelog item describing say a survey code
book or e.g., & questionnaire report item describing information
data about a person, can also be made explicit as to the ordering
relations between the items in a file. Thus the codebook proto-
type norm that purports to control the processing of actual
information data in empirilcal questionnalre reports or of actual
analytic scientific data in social science index construction is
the same as the catalog prototype norm that purports to control
the processing of bibliographic data about codebook prototype
norms. That is to say is the same for & consideragble amount of
data processing activities because they can both be heavily

structured.

When 1t 1s not possible to say explicitly what entries
are legal under what category, wvhat are the precise relationships
between categories, what are the categories that define the
boundaries of an item, what is the threaded pattern of items in a
file~-we say that we have loosely structured data. Both for real
deta end for bibliographic data the structure may only be a little
loose, i.e., some of the entries under some of the categories are
open, i.e., cannot be explicitly closed in some effective consis~
tent way. However, with feedbsck--post editing in an adaptive

system for processing the data records--one can get on top of some

of these exigencies. The linguistic problems associated with wholly

loosely structured data are beyond our competence; however, we

provide some clericel help for handling this kind of data.

When one has different types of data in various states of
process from different files, generating reports of one kind or
other, one has to develop an administrative model that can organ-
ize the contingencies via a process catalog of some complexity.
In effect we have backed off fromrthe philosophy of language
problems inherent in loosely structured data in favor of the
philosophy of science problems inherent ih the organizing and
searching heavily structured data that may be used for policy
and research purposes, The macro organizetion and search
capability operates through the prototype nomms. A particular
norm is that organization that controls a particular body of
data. The method is the procedures for processing the data
under the norm which may be viewed as a data sieve, When the
norm and data are not in correspondence, control audits over
thelr discrepancies must ve available so that one can elther
cdit the norm or edii +he data, It is also possible that one
may have errors in tha syntex of the procedure descriptions;
it is therefore neczzssary to have control audits over these
errors which must then be edited. One might also be accessing
the wrong data amand tnerelfore control audits over these errors
must elso be avaeilable. In general, a visible sampling capability
nust svpport the audit-edit machinery. As well as control over
the data process application one must have access also to controls
over data format, data embodiment and data channels provided by

the underlying computer (program management) systems structure.

TN TR OF

hic date is not fulfilled by ADMING

The function of designing o noxm which is Inteaced to sieve
informstion data or bibliograp

i so far as there are no executalle procedures for nowa dcolgnian.
| However, there 1s provided clerical procedures for manipulating tic
descriptive information used in de w’:eing a norm, The functlon of
operetionalizing a theovetical Ly csls such thal corresporacacs
nay be sought with sclentific datea i: similarly not fulfilled

executably by ADMINS. However, therce is provided executable pio

(%1
ct

cedures for manipulating bthe syubolic tokens which represen
hypothesis aefter the clerical proccdures nave baen used to
describe the infoimation as cclentific data. Indeed after omw:
chunk of scientiilc data lLias been co handled another clhumk nay v
processed by executeble proceducres. Thus the constiruction ol a
geilentific data norm moy gebt more of an executable hoost fron
ADVINS than an information detz noim, although the intellectu:’
planning work in both cases 1s done oy induction machines callead
people, However, by offering them a comprehensive clerical ass'a
they get the most out of this awgmeantation by endeavoring Lo ke
public their privete vays of working which they normaily do noh

think aboub when cracibratleg on substantive or formal Lssuus

Once a particular norm has been explicitly stated, if we
have been flexible in our system design, we can expect the system
to help us amend the norm. The function of an organizer sub
system is to make it possible to get a norm into an active state
so that it can be applied to the data. The function of a processor
sub system is to have controlled processing of the data under the
norm., The function of an anaelysis sub system is to accomodate to
the analysis purpose of the user of the data, and to assimilate
these purposes in the development of more powerful data analysic
capability. The analysis sub system must also provide an interface
to statisticel analysis sub systems developed by scientific users.
The result of the analysis of information data will be dexi~ed.
measures gbout the information system environment. The result of
the analysis of bibliographic data will be derived measures abous
the informstion system collection and usage. '

1.

Teking a general look from the top ADMINS can be used in the
Tfollowing way as outlined in Chart A. The heavily structured
bibliogrephic data, i.e., a catelog of codebook prototype norms
is analyzed. The result from analyzing this 'information model!
1s the selection and subsequent retrieval of codebooks and
corresponding data files for some particular use purpose. The
pertinent actual irnformation data is then processed under the
codebook prototype norm end anslyzed according to the user
scientific purpose. The processing of data under norms continues
through several steges, at the end of a particular phase the data
and norm is in a certain state. Reports, current and cumulative,
will have been generasted which describe the results of the
activity, and on the basis of these reports, decisions are made,
as to what to do about a certain state of data or norm. The macro
organization of data source files, report files and of norm files,
by means of & ?rocess ratalog which will pemit flexible gearch
strategies i1s the administrative function of AIMINS. The purpose
of ADMINS as an 'administrative model' is to provide the data
management capabllity of accessing retrospective bibliographic
data via the 'information model' and then of providing selected
actual data for current processing as required by user purpose.
Basically ADMINS can support three main types of user application.
The cross analysis of the characteristics of bibliographic data.
The cross analysis of the characteristics of information data,
which can then be operationalized to & cross analysis of the
characteristics of scientific data, which may then be used to
support the building and testing of a social science model. The

cross anealysis of the characteristics of information dailec con alse

be used in the support of policy formulation. For example, #lhn
characteristics in a personnel file are original measures as Lo
role and person which may be cross analyzed and the derived mea~

sures used in support of staffing policies.

Chart A ADITINS

l1.J0.1 o ~an .
HACRO~CREGAITIZATTON
actual data bibliographic data
deta-retrospective data analysis data=~current data~retrospective data analysis data~current
derived measures ¢—— cross analysis original measures prototype of directory adform
informetion data g- information data collections ¢~— (classified) .y (bibliographic
G catalog
scientific data T 'information model! T l
v source data
report files working files source file files working files collection

actual data codebook prototype catalog files
[L i ! [|

process catalog directory adform a source data file cross analysis bibliographic

'adﬁlin glodel’ (classified) (codebook) ¢— a codebook prototype bibliographic data
admih data data

ADMITS was concelved as a data management system using a cou-
puter system as an administrative tool. This means that substantive
decisions can be made on an immediacy basis without being bogged
down with clerical chores. Thus in order to make invelligent use
of interactive checkout and update, the data processing must be
such that control interrupt decision making is really decision
making of an intellectual nature. Clerical decisions that one
cannot routinize must be swept up on the run when substantive
decisions are being made; otherwise machine aided cognitlon is a
farce and resources arc being wasted. This 1imits the use ol the
ADMINS system to users who have considereble substantive knovledge
of what they want to analyze, and are sufticiently dedicated to
learn to make decisions as they go rather than by searching for
a needle in e haystack of tables. Admittedly this is a tough
confrontation, it will, howvever, have to be Taced sometime so i+
may as well be now. This agony can be mede somevwhat less exaspers
ating if the designer can provide a consistent language in which
the user may describe und instruct the various data processing
tasks. The grammar of the crgenizer, processor and enalyzer arc
all quite different to each other, however beth within and acrose
these sub systems we hsve made an effort to be consistent in
language couventions. TFurtheimore we have provided on line docu=-

mentation not only of 'command' syntax but of 'command® explanations.

1

As the systems anelysis developed and the efforts to abstract
general purpose functional sub systems that could handle different
types of data became easier to specify explicitly it became appar=
ent that some parts of the task were tougher than others. The
simuletion of sub file construction both within and across files by
means of indexing the data so that one may compare the relevant
chunks to each other, further analyze within a chunk, re-~group accord-
ing to a theory or policy, was one such task. Another was the
development of an ability to name indexes by means of token symbol

and/or by nemes such that one had a mechanism by means of which one

may begin a classification of data. An actual data (information

or scientific) index structure may be very complex. The co-ordin:i i
of tokens (names or symbols), the relationship of tokens as roles

or links, the inclusive hierarchical relation of tokens providce

the ability to classify data indexes which can then be searched &’
selected by means of +hese tokens. This classification of an index
structure, which is in effect a classified index to the partiel
contents of one data file, may be abstracted from a particular

index structure and then applied to another file, given that it is
possible to recognize and erect a similar index structure, i.e.,

if one could do it by hand, the classification will be able to do

it also. The relevant classification code conventions could

either be completely public or it could be an explicit but private
user convention. The public classification technique could be
applied to heavily structured bibliographic data provided the
categories in the catalog items are sufficiently detailed to make

the exercise interesting. However, in what way one can categorize

in a heavily structured catalog the content of a variety o' Lurveys
such that the noise does not overpower the coherency of tue caio-
gorles in the classification syntax is a problem we have yei Lo fio e,

along with the problem of classification of topic subject descripcii:-

m

The general considerations so far expressed usually serve two
purposes in any particular study. They get the administrative
systems analysls into the right area of discourse snd hopefully
they force the subsbantive problem specificationc out into the,
public and explicit, open. IHowever, the form of the system
design nust eventually be specifiled in a more detailed, coherent
and integrated way.

The design of an administrative form whose function is to be
a vehicle for expressing prototype norm specifications under which
heavily structured bibliograpkic data and actual data, both in=
formation and scientific may be processed, requires detailed
consideration. Basic date elements are possible entrics under a
category. The tokens used for representation are numerical or
alphabetic codes sometimes even alphanumeric codes. Possible
interpretations of these codes vary. Sometimes the numerical cod:
represents & nominal code, sometimes a numerical valuz., The token=
mey also be used in a classificatory way under a particular cabc-
gory. Within a category it must be possible to specify associaticns
between the possible entries and also contingencies between thom.
It must also be possible to change the order to the possible ortries
end to combine as required. Where the entries are numericel -salues
to perform on them numerical computation and also as required to
interval the numerical values as discrete nmumerical codes. One
nust also be able to specify audits on the legality of actuanl
entries against possible entries both before and after the required
transformations. The subject description of the possible eniries
and of the category under which they fall must be stateable and
any changes to codes reflected ir changes to subject description.
The format of the data nust be specified unambiguously as this is
a matter of interpretation as well as of existence. Finally the
category must be named as well as described. In summary then, we
have statements in an object language about subject descriptions
of date and token codes for the data. We also have statements in
a meta langusge describing the deta relationships and trensforma-
tions, and ought/is relations between norm and data. Thece meta
language stétements are named. TIor each category the object and
meta statement are set out as sentences in & paragraph and the
syntax 1s kept as consistent as possible. Some of the statements
are executable and some only descriptive. Some stabements may
refer to another category.

2. b

The categories, &s named, may also exhibit associative and
contingent reletionships which must be specified. There must also
be a capability of specifying audits between possible entries in
different categories. The description feature must allow for
descriptions that reflect a topic éovering several categories and
any comments as required. The administrative form may be composed
of seversl categories for an original item. The adform must be so
named such that another adfoxrm composed from the same original item
ey easily be related to it at analysis of categories stage. The
specification of an administrative form when syntactically complete
may be viewed as a computer program in a problem oriented languege
wnich serves as input to another computer progran called the
Organizer. This progrem is a translator or application complLer
wnich outputs a file of cetegories specification, a file of subject
descriptions, a format specificsations file, a resequence table file,
and a recording and audit program, subject of course to syntex
error discrepancies which are reported upon at compllation stage.
This may be achieved in a diagnostic mode before & real run is

made.

The function of the Processor sub system is that of a control
program over the coding transformation process and audit control
process, as applied to the empifical data. The discrepancies
between the adform norm and empirical data are here checked out.

A pass may be made through the Processor sub system gathering
information on discrepanciles without actually applying the required
transformations to the data. An item can be sampled giving the
detalils of the transformations and discrepancies for each entry as
occurs in each category. A number of items can be processed and
the type of discrepancy as occurs shown for the relevant category
in the relevant item. A control may be set on the number of

errors to be allowed beforq processing is to stop at the next item.
Control may similarly be set as to the number of errors allowed in
a category. Control results may be specified in an actual error
versus control error table, It is also possible to pass through
the system in silence mode, generating no descriptive information
ebout errors, only the number of errors, which may be done in
verify mode every 100 items. Naburally one will eventually pass
througn the system actuelly changing the data and get an item
output file containing the relevant categories and changed entries.
One nmay also obtain a report file containing a summary by category
of error types and number of errors. Also obtained is a file of
aggregates of data entries from which a file of marginsels, i.e.,

the aggregates with their subject descriptions may be procured.

There is also the capability of processing a data file in
sections such that one may append subsequent sections to previous
sections. This pemits two different kinds of flexibility. Some
source files are continually having new items added to them, as
for exsmple a catalog of bibliographic data. Some source Tiles
are quite large, thus it would be convenient to process the file in
perhaps some random or skipped way and later perhaps process another
section of the file. In both cases one would 1ike to be able to

treat the appended files as one file for analysis purposes.

2.

Wnen & user has selected all or some of the categories in a
codebook prototype norm, e.g., questions in a survey codebook,
e.g., combinations of responses from a variety of questions as a
soclal science category, e.g., categories describing bibliographic
data states, e.g., categories describing personnel characteristics;
and these categories have been assembled in an administrative form
under which the data has been processed, the result is a file of
processed items in correspondence with the norm. When this
processed item file is inverted we now have a Tile where the order-
ing relation is by category where previously it was by item. Each

category record contains the normative description that defines the

" category and its legal entries plus and subject description of

both plus the actual entries as have occurred in the empirical

data. In essence each category record is a contents list of the
possible characteristics and a file of the occurring characteristics
for each category. A category record file is a file of the cate=-
gory records that have been chosen perhaps at different times

from the original codebook for the original source file.

2.

The simplest example of a category record is for example
when the contents list describes the possible responses to a
survey question and the record contains a file of the actual

responses of the population interviewed. A more complex example

‘would be when the contents list describes & grouping of possible

responses eaccording to some social scilence category and the record
also contains & file of the actual responses of the people who
responded to these selectively grouped possible responses. The
second type of category record would have been constructed from
certain operations upon the first and contingent upon the results

of these operations. An in between kind of construction of a
category record would be that when a new category record constructed
from the first type does not contain all of the information in the
second type. For example, when the contents list is of the second
type but the record does not contain the file of actual grouped

responses but only contains the number of people who so responded.

]

An index, in the simplest case, i1s an index to a particular
entyy in a category record. It is a list of the locations of the
actuel occurrences of, e€.g., a particular response to a question
as filed in the category record. Nore complex indexes may be
constructed by, for example, unioning responses to a question.
The actual entries in a category may be intersected with the
actual entries from another category thus forming another typs
of complex index. In this case we would for example have a list
of the actual occurrences within the same item of two different
responses as filed in two category records drawn from the same
source file population. Similarly one may union entries Irom
different categories. With these tools one may build up complex
information indexes which point to the occurrence of character~
isties in combination from different category records about the
same source file., For people who think in temms of trees, cach
node of the tree is an index and a path from one node to the next
node is operation of constructing another level of indexing with
another entry from another category. Unions are in effect the

combining together of paths.

Decisions as to what characteristics ought to be combined in
an information index are made on the basis of what named information

one requires in combination. As 1in the case, for example, with

bibllographic data when one wants information about suxrveys, e.g.,

the country, the type of panels, the time, the size, the codebook
location, the data locaticn. However, the number of items that

one obtains at a particular intersection in the case of surveys

is further examined in more detail for descriptive information. If,
however, the items are records about an individual in a personnel
file this further examination would also follow, but in the case of
a social sclence survey, the scientist wishes to invoke statistical
tests upon the numbers of individuals with selected characteristics
so that he may decide in what way he invokes further combinations
of these information characteristics. These complex information
indexes he is building according to a purpose such that at some
point he can assert that they are in correspondence with a social
science concept and thus name them as a social science index. In
effect for the social scientist, information index construction is
not only a search tool where interactive checkout of comparisons

of summearized data appropriately described is essential to path
one's way down complex trees (if so conceived) but is an analytic
tool in the sense that statistical tests may be called to allow
interactive decisions to be made in support of substantive

Imowledge.

2. h

As these complex information indexes are bullt with reference
to attitude characteristics, performence characteristics, existence
characteristics, and each one is perhaps equivalent to a simple
social science index, the table way of thinking may then be helpful.
Severel assoclated complex indexes may form the columns of a table
and several others the rows of the table, The social scientist
may ve investigating some soclo-psychological concept vis a vis
performance in certain subject areas, He may wish to compare
several socio-psychological concepts against the same subject
area performance and existence criteris within one source file
population. If he has seversal source files which are both in foxrm
and in concept compatible he mey wish to run his enalysis in
parallel for the different pcpulations. For example the same
type pancl for different time periods for one country. Similar
panels for different countries at the same time. Comparisons
for respondents who repested over time, The sclection of similar
occupational groups from panels of a different nature for compar-
ison of attitude and performance at roughly similar times in
different countries. As discussed in the previous paragraph,
information indexes may be built up, and several different files
worked in parallel. The ability to work in parallel allows the
investigator to depart from fundamentalist assumptions or clerically
fossilized activity and massage the given informatioan for each file
into an indexing strategy that is compatible for comparing across
filtes, meanwhile using a rational naming convention which helps
xeep track of the complexities involved in manipulating symbolic
tokens which are open to different interpretations. In order to
make this feasible one has to have a directory of the index
structure that is a directory of the names or symbols used in
labelling the structure. One must also be &ble to list the
contents of the directory by file worked then index or by index
then file worked. (ne must also be able to list the details of
+the index construci:ion,

\

(

Chart B

A.Mt ’~ '
| —— o . /
Later Face
. ,Be g
C,fah- Bx,f\o..(‘,j |
— ' P&&M:ﬂs, ety B u
Codebooil \\ v% L fFocess Bodt
Peepos | eq. subject | 0 o N
» vipose _ # OQGAN‘\Z\E ,'u.l‘\p'{'»/n {fn‘(*?;m,;; Dese
Previevg X ¥ ."neem® — -
analusig - : ¢q.feede | eniond il |
"“t&:li‘s _ t’-?v"“‘i o 4 X
A~
CA .
Repocts ;. PKOCES»j
O.v&'t (‘t?or't . ::;fgc trol
’ h - conifo
P\"OLCS-‘ mrjmo.'(.s OU'Q:Put cont el _—
(nput data
ok;tpu't
r&w:@.

NDwedfo e

Clessified

ceword of o
oprations
G.crfess o l)
‘F\\!S

SubFiled -

l’ ,
Com pler Tables

JComplex |
(te cois «

ﬂ

p\Qt.o&mq‘

Calumps o ce
‘compler indeses
{(q.‘Hu& and

Co@fo‘ yFleow S

QAlasy Sovreg,

Report + _mﬁrg:a.tm Flow £ les)

hu& +ow

When the investigator is combining and recombining various
charscteristics in his index construction he is in effect simu-
lating recoding which he may actually effect later on if he com-
poses another administrative form embodylng new combinations.
Also, if a consistent convention is adopted for the naming of
indexes either with names and/or symbols, with respect to one
processed source file, the recoding of another processed source
file may be simulated by application of the names in the directory
stfucture of source file A data to source file B data. The co=-
ordination of word forms as index terms within a name, where the
index terms may be specified as role or link facets is a naming
organization which may be searched for co-ordinations or for
hicrarchies of word forms. The information indexed thus named by
a co~ordinstion of word form index terms may have been constructed
from simpler indexes nemed one to one by the component word form
irdex terms. In all probebility this will not often be so, thus
a mechanism for selecting names of indexes from which a more
complex index was constructed, is desirable. "So also is the
converse ability to select the name of a complex index gilven the
names of the simpler indexes from which it was constructed. The
renoming of the nemes of indexes as names and/or symbols 1s required
as is the different reguirement, i.e., the renaming of indexes.
When only one source file is being worked both of these renamings
have the same effect, however, when two or more source files are
veing worked renaming of an index affects only the index concerned
whereas renaming of a name cffects all of the indexes thus nemed.
Conceptually the naming of data indexes and conventlons for
classifying the names (and therefore the date indexes) is similar
to the naming by index term word forms which describe subject
deseriptions (loosely structured data). Once index term word
forms have been chosen (by computer progrems and post editing)
as naming elements for the description of subject descriptlons, the
machinery for manipulating the naming classification of subject
descriptions can be the same as the machinery for monipulating the
naning classification of information indexes (and social science in-

dexes) for actual data and heavily structured biblic;raphic data.

The date menagement task remains essentially the same when
a category record contains only aggregates of an entry, although
the sclentific statistical tests mey be of a different kind. In
the simplest case the asggregate may be the population of =a town,
the sample size of & survey. For demographic or ecological data
the original measures are of this kind, when derived measures are
the result of some éomputation on the coriginal measures. The
ageregates themselves may have been produced by date »rocessing
operaticns within the system or an aggregated data file ray have
been entered into the system as a source data file. “Jhea these
aggregates are to be selected as control contingencies over he
analysis oI category records containing the entry characteristics
of a nuiber of individuals, the proble: becomes one of devising a
category record that contains as entries the aggregates Tor cach
of The groups within the category. For exanple, a category record
for towns, for example, a category record for survey populations.
Once constructed these category records may be analyzed using the
normal indexing machinery.

2.

The flow of the instructions and user control via feedback
loops is outlined in Chart B. The top level feedback is between
analytic and organization-processing. Here the hunting and com-
paring analysis (perhaps perceived as pathing a way through trees)
constructs complex indexes as rows and columns for tables. These
tables are convenient artifacts for book-keeping parallel index
construction within and ascross files by means of the directory
of classified names for the index structure. This simulation of
recoding by index construction mey be consolidated in a new admin-
istrasive Torm which is organized and processed against the previously
processed data, and the result of the subsequent processing
inverted to category records for amalysis of these rore cogent'
data categories. An intermediate level feedback loop 1s between
orgenizing and processing. The discrepancies between norm and
empirical data have to be settled by amending the norm or the
data and re-processing until correspondence 1s satisfactory to
the user. The micro-~level feedback loops and continuous inter=
active checkout is mainly evident in two ways. Syntax error
messages, especially in the organization of the adform; end data
processing and data analysis interim results checkout as information

upon which to make a decision as to how to direct the flow of control.

niii

The Tlow of interaction and administrative control via feed-
back loops is outlined in Chart C. The top level macro-organization
Teedback is via the collection catalog (also used by users) and
the process catalog which has to keep track of all files in process
and eil states of each file for each phase of the process. An
administrative form cean be at different states of organization,
there can be severel administretive forms for one source file.
Adforms for different source files mey be siblings of each other.

he organization of an adform results in a family of report Iiles
and report files from the processing of data under this adform
join the Tamily. The source data may be processed in separate
sections which have to e appended. The processed items are
inverted and the category record file may be composed from
different processed files frcrnn the same source file. The directory
end tebles from analysis of category files in parsllel from different
scurce files are also report Iiles. Working files may be saved.
The Sanction of a process catalog is that of a retrospective record
of the results of operations, such that the relevant files may
retrospectively be selected and retrieved. The collection cata-
log has the same function for unprocessed material. A system
renark file allows for user suggestions and a monitoring of command

see so that further options mey be developed. On line documenta-
tion is part of each program and gives details of correct command
syntax and explains the function of each command. The retrospec-
tive selections and retireval capability for data, source and
processed, and for codebooks, source and processed will be augmented
by a more micro level feedback control in the form of a modest
ability to access small chunks of loosely structured data such as
subject descriptions to codebooks. The accessing capability in
conjunction with accessing of heavily structured categories of
file description both source and processed for empiricel and norma=-
tive data represents our present endeavor in computer based data

nanegement,

-

System Progréms

Organizer
Processor

Analyzer

Program Maintenance

System

Programmer

Files

USER FILES

report
files

working
files

T T'e

Data Files (source)

T -

Collection Ceatalog

Administrator

Administrative information
Control over data
Control over prograns

Process Catelog

USER FILES

report
files

working

files

USER FILES

repors
files

working

USER Commnon Files

report files

working files

o

. mnm

LAs Ldmins is a development system resting on toﬁ of ancther
development system, the CT3Z of Project MAC, the obviously one
seeks ground rules for developing. an interactive data manegement
system. Mcnitoring usasge is helpful but not very meaty. DPro=-
cedurel reseerch, i.e., the activity of regarding any particular
substantive analysis from the frame of reference of the massaging
of data mansgement procedures to a better user fit within an
interactive checkout philosophy, is the only really useful way to
proceed. This in turn means that users who insist on using a
machine aid cognition resource, which is limited, only with pro-
duction of substantive results in mind, the fast burn around of
batch production of tables mentality ought to be discouraged.
One can do this by system design, edministrative action end social

pressure and perhaps better, by all three.

3ea.l Physically, data input to Admins consists of a linear sequence
(file) of items. Each item contains positionally designated head-
ings under which codes are found. We call these headings categories

and the codes entries. A category may be of the following types:

; l. Nominal - Each entry records the presence of some nominal
characteristic of the item. These nominal codes may be

either numeric or alphabetic.

2. Ordinal - As with nominal entries, ordinel entries
record some characteristic of the item, however, the
al?hanumeriq velues of the entries code an ordered
relationship linking the characteristics the entries

represent.

3. Interval - The entry numerically messures some charace

teristic of the item.

3e8.2 The physical representation of the entry codes may be one of
three types.

1. Binary Coded Decimal - The entries are 6-bit codes
which may be used to represent the integers, alpha~
betic and most punctuation characters., Sequences
of BCD codes may have several interpretations, such
as various length integers, alphabetic codes, etc.
Most commonly ECD codes are found on IBM (Hollerith)
punch cards or on tape 'images! of these cards.
Clearly, BCD codes only cover a few of the possible
punch permutations in a 12 hole column. This fact

leads us to 2.

3.8.3 2. Column Binary -~ The entries are represented as holes in
columns of a punch card imasge which exists on tape oxr
disk; each column is imeged in & 12-bit pattern.

(Column binary card images are commonly used to hold
binary translations produced by Fortran~like compilers.)

3.8.4

4

Much data. p*‘epare;d o;nore the lase 1950's, that
under the inflaence of i:ne counter-sorter, etc. autanpued
to code maximum mfomation onto the punch card thereby
creating patterns of holes in & column which had no BCD
equivalent. As a result if such cards are read by
standard input/outpit ﬁ'gckabes (:L.e., designed to
accomodate BCD) various{ forms of confusion ensue, none
of a constructive natune To summarize, BCD uses 6-bit
codes to represent i;he on'ben'l:s of a column on a Hollerith

card. Column b:marg aages' a colum as a 12-bit

oo]

pattern. :

P&

Admins binary - The‘;‘ datgp output of Admins, a form of
binary coding whic 1n W vidually packs each category
based on the data désc vtions of the category on the
adform, may be used' as inpu:t to Admins as well. The
various uses of ;eeél:mg systen output back in as input are
discussed further on.

!
¢

s .

o
.

oy W

B
23

L W et

R VW A LN

R

Admins can be concelved of &5 a stetic collzetion of integrated
functional sub systems, each embodied in computer progrems, each
with its own administrative languages, ecach with its own report
generation and diegnostic abilities. Alternatively, the system can
be understood as a dynamic flow of information and decisions within

and across sub systems under comtrol of the user, 'conversing'with

and reacting to Admins.

In order to fully understand the latter some lmowledge of the
former is required. Therefore, we will first attempt a static
description of the sub systems followed by & discussion of the
possible administrat’ -1l man-mechine feedback loops the

program design is abiccomodate.

3.c.l

3.c.2

L CTSS lManual AH.3.07

The input to the Organizer sub system is an administrative form
(edform). The adform contains process and audit informetion for
cach category the user wishes to access in the data file. That is,
the adform describes a prototype (as well as transformation for
producing this prototypé) of the item record (output) file which
the Processor should produce from the input data file.

The process and audit statements on the adform are either

executable or descriptive. The following chart gives examples of

each.

Process Audit

Descriptive Examples: Exemples:

No. of entries in category, The maximum permissable
an Fpgiish subject descrip- number of entries in a
tlon for each entry and for category, likewise for
the category. the minimum.

Instruction Examples: Exeamples:

Executable , :

() A recode statement, a re~ An executable statement
sequence statement, the which declares the
location of the input codes 'legal! input code con-
on the item record. figuration, likewlse for

the output code configur-
ation.

The output from the Organizer is, in the case of a 'valid orgon-
ization', a group of disk files containing tables, a ring structure,
and a computer program, all of which can be though of as a computer

understendable rendition of the adform.

Alternatively, the Organizer may have found errors in the ad-
Torm either of a purely syntactic or of a coherence nature, in which
case the output from the Organizer are descriptions of the errors.
The user is expected to correct +these erroré and re-submit his ade~

form for organization.

The adform 1s prepared, edited and re-edited using the IEDL com-
nand of CTG3, which allows en alphonumeric file to be flexibly typed

onto the disk and contextually altered.l

O
P o

o

The adform 1s a seguence of paragraphs, each corresponding to
a category in the data. Iach paregraph is broken down into a
sequence of sentences. Each sentence contains a statement in a
language which is understandable %o the Organizer. The function
o the repetoire of statements made available to the composer of
the adform (the user) is to provide a langusge sufficiently rich
Tor describing all necessary data audit and data process procedures

dictated by the users purpose and the state of the input dats file.

A statement consists of a statement identifier, followed by
an '=', followed by a string of alphanumeric symbols conforming to
the syntax of that statement, followed by a '.'. Blank characters
are of no conseguence anywhere on the adform. This permits the

user any 'form' design he wishes in laying out the adform within

. the constraints that statements terminate with periods, para-

graphs with double periods (..), the adform with a triple period
(...); plus constraints imposed by the symtax of the individual

statements.

Statements are of the following types.

1. Location -~ This instructs the Processor as it is filling
the input positions where 1o locate and how to interpret

the input codes.

2., Audit -« These state a norm against which the data will
be compared. Discrepancies between norm and data will

be reported by the Processor sub system.

3. Descriptive -~ These describe the form and content of the
category.
4, Transformation - These transform the contents of the

input positions into output entries.

5. Contingency - These assert the data contingent flow of
computer control thrpugh the adform during processing.

These statement types are not mutually exclusive, that is particular

statements may be of more than one type. (For example, the re=-

sequence statements perform both sudit and CUUTTT7ITTED functions.)
transformational

3.d.3

The Processor sub system (under interactive control) will be
responsivle for reading the input items, using the location state-
ments on the adform to fill the input positions, applying the
executable statements on the adform to these positions, placing
the output entries from each category into item records, and writing
the item record file onto the disk. As processing occurs (and
cumulatively as well) audit discrepancies are reported.

3.e.0 Before delineating the individual statements of the organizer
language let us describe certain syntactic conventions common

across many of the statements.

3.e.l Positions can be thought of in two ways; as containers holding
alphanumeric velues or as codes which are present.or ebsent. Each
interpretation is convenient for certain types of inpui_data.
Containers are referenced by prefixing the position number with a
V, creating a simple arithmetic expression. For exemple, 'V3' is
read 'the value in position 3'. The alternate interpretation of
positions is as a boolean or loglcal expression which is either
true (if the entry is present) or false (if the entry is absent)
and 1s stated by prefixing the position number with a B, creating

a boolean expression. For example, 'B3' is read 'boolean 3'.

3.e.2 Constants are numeric values, such as 7, 10, etc., or alpha=
nmeric in which case they are enclosed in '$', such as a, $779,

$$. Constants are simple arithmetic expressions.

3.€.3 Arithmetic operators are used to link arithmetic expressions

to form erithmetic expressions. Arithmetic operators are + (plus),

- (minus), * (multiplicetion), and / (division).

- Relationsl operators are used to link arithmetic expressions
‘ to form boolean expressions. The relational operators are:
L (less then), E (equal to), G (greater then).

3.e.5 Logical operators are used to link boolean expressions to form

boolean expressions. The logical operators are: A (and), O (or),
X (exclusive or), N (not), T (then).

3.e.6 Precedence operators - Parentheses are used to express precedence

of interpretation when evaluating expressions.

3.e.7 Subroutines may be invoked by preceding the subroutine name with
'SB' for a boolean subroutine, 'SV' for an arithmetic subroutine, and
Tollowing the name with arguments enclosed in parenthesis and separated

by commas.

A S

3.€.3 (As the statements using the syntax conventions thus far des-
cribed are easily translatable into MAD statements, which 1s what
is done to them, further explanations of their meaning can be elicited

from the beginning chapters of the MAD manual,)*

3.e.9 Through Notation =~ certain statements require the assertion

of sequences of constants. '+' (read 'and') is used to separate
constants which aré noncontiguous (i.e., do not differ by 1) and
tot (read 'thru') is used to assert a contiguous sequence of con=

stants.
Noteation Interpretation
1-3 1,2,3
1-5 + T+6 1,2,3,)"': 5;7:6
$13 - $hd 1,2,3,4 left-justified alphemmeric
T=L42 T,6,5,k4,2,
3.€.10 Syntax Convention Chart
Positions Vin' or B'nf
Constants numeric or alphamumeric (enclosed in $)
Arithmetic operators + %/
Relational operators LEG
Logical operators AOXNT
Subroutines Boolean and arithmetic
Through Notation + = numeric and alphammeric
Precedence ()

* MAD Manual - Galler Arden Grah:m, 1963.

3.T.2

What follows 1s a descripticon of all the statements in the
Organizer language. Following each statement in parentheses is its

abbreviation, which may appear on the adform in its place.
Location

FORMAT (FMT') - There are three format statements; for BCD, for

column binary, for Admins binary.

BCD - This states the card number (within the input item), the
column on the card, and a Fortran format statement of form XYZ where
X is the number of input positions to be filled, Y the interpretation
(I for integer, A for alphanumeric) and Z the size (in columns) of

the Tield; card, column, format are separated by commas.

Column Binary - Card number, column nuiber, punch number. The

punches specifisble are as follows on the table.

Punch number Hole
1 1
2 2
3 3
I L
5 5
6 6
7 i
8 S
9 9
10 0
11 X (Zone)
12 Y EZone)

13 Blank (i.e., not 1-12)

Punches may be referenced using the through notation. Each punch
goes into an input position. The card and column number are
separated by a comma; the punch mubers are enclosed in parentheses.
An entlre column may be read as one input position containing the
12 bit pattern by not specifying any punches. More than one column
may be referenced in one FORMAT statement, by repeating the pattern

of card, colwan, punches.

3.£.3

Two subroutines, COLINT and COLBCD are available for inter-
preting full colums read into single positions as integers or

elphanumeric respectively.

Admins Binary - the category name followed by the entries
required. As in column binary entries are enclosed in parentheses,
mey be specified using the through notation and more than one
category may be referenced.

lNumerical (i.e., intervel or bibliographic) categories are

referenced by placing an 'N' between the parentheses.

In all three varieties of the FORVAT statement the user is not
restricted to the originel ordering in the input item, e.g., ﬁhe
BCD T'ORMAT statements in an adform may skip back and forth across
the input cards and columns. As well multiple references are made
to the same input fields by prefixing in the FORMAT statement a
previous kcategory name-~vhose input positions one wishes to reference~-
with a '/ ', This allows one to reference the same input positions

as ‘the category 'slashed'.

T

3eZed

3.8.2

3.8.3

Audit

AUDIT INRUT (AI) - The user is asserting--by stating a
boolean expression in terms of the input positions--his expec=
tation as to the state of the data in the input positions. The
boolean expression is evaluated using the data in the input posi-
tions, for each item. If the boolean expression is false the data
in the input positions for that item is discrepant; such occurrences

are reported during processing.

AUDIT OUTPUT (AO) - Similar to the Audit Input statement
except the boolean expression is stated in terms of the output

entries.

AUDIT ITEM RECORD (AITR) - The boolean expression is stated
in terms of categories and their entries appearing in the adform.

This allows an output sudit contingent on data in several different
categories.,

3.h.1

3.h.2

3.h.h

3ehe5

3.h.6

Descriptive

NAME (N) ~ This is used to assign each category a

6 or fewer alphenumeric character name., All references to the
category are made with this neme., NAME is always the first state-
ment in each paragraph, as all diagnostics are described with

reference to a category nane.

SUBJECT DESCRIPTION (D) - Each category and each entry within
it receive an English subject description--72 alphanumeric charac-
ters or fewer., All multiple blanks in the description are squeezed
to single blanks. The entry descriptions are separated by slashes.

Numeric categories are only given category descriptions.

ENTRIES (E) - This states the number of possible entries,-
the maximum permissable in an item and the minimum permissable.
These three numbers are separated by commas. If the category
is numeric, that is its entries are numeriec velues, then one writes

an 'N' followed by a maximum velue for the output entry.

ASSOCTATION LOCAL (ASL) = By using a pattern of 1's and O's

the ASL statement asserts associations among the entries.

ASSOCIATION GLOBAL (ASG) - Same as ASL except the association

is smong the categories.

SCALE (S) = 'ON' specifies the entries are ordinal.

»

3. icl

Transformation

RESEQUENCE CODES (RSC) - Input positions (interpreted as values)
mey be resequenced into output entries by specifying a resequence
table using the through notation. The teable is‘interpreted to mean:
if the nth value of the table is present in any of the input positions,
the nth output entry should be produced.

As RSC implicitly audits the data (i.e., an audit discrepancy
occurs if en input position contains a velue not in the resequence
table) one may follow the resequence table with a permission tablee
separated from the resequence table by 'pemith-which contains values
(again using the through notation) one does not want represented in

the output entries but nonetheless are permissable input.

RESEQUENCE POSITIONS (RSP) - The same as RSC except one
specifies positions and not their values. An alert reader will
notice that the flexibility of the column binary or Admins binary
varietles of FORMAT statement allows one to resequence in that
statement. Since the absence of any transformation statement in
a paragraph causes input to become output, one can resequence
positions without.a transformatlon statement. However, reasons
of style, éouble resequencing of complex input, and the Tact that
one cannot ‘permit' on the FORMAT stabement make RSP useful.

RECODE (RC) - One states a sequence of IF's, each of which
are followed by a boolean expression. FEach 'IF' is evaluated

preducing the nth output entry if the nth 'IF' was true.

ARTTHMETIC (ARITH) -~ If the output entry is a numerical value
computed by an srithmetic expression in terms of the input positicus,

the arithmetic expression i1s here stated.

INTERVAL (INT) - This is us~d if the input positions contain
mmeric values and one wishes to »nroduce output entries corresponding
to intervels of these values. Th« Intervaels are specified by writing

the boundaries separated by a '=~'; the intervals are separated by commas.

Contingency

3.J.1 FILTER (F) - This contains boolean expressions followed by
destination paragraphs specified by their caiegory names. fach
boolean expression (stated in terms of the output entries) is
evaluated. If found true control is routed to the specified
destination, otherwise the next boolean expression is evaluated,
and so on. If all boolean expressions in the FILTER statement
are false, or if there is no FILTER statement, control continues
at the next parsgraph. As in RECODE the boolean expressions are
preceded by IF., They are followed by GOTO and a category name.
Note: TFILTER affects comtrol flow during processing not during

orgenization.

3.k.0 The Organizer is progremmed to recognize and clearly describe
quite & variety of possible syntax or coherence errors. Let us see

a few examples.

3.kl Synteax

A statement in‘ category ‘'xxx' does not have a terminal perilod.
BCD Format - category 'xxx' uses column outside item.

Imege Format - category 'xxx' exceeds 12 punches plus blank.
BCD Format - category 'xxx' overlays previcus format.

Literal - category *xxx' has unbalanced dollar signs.

Category 'xxx' - item record audit references non-existent
entry of category Txxx'.

Interval for category 'xxx' 1s incomplete.

R.k.2 Coherence

The following statements must always refer to the same number
of output entries: SUBJECT DESCRIPTION, ENTRIES, RESEQUENCE
POSITIONS/CODES, RECODE, OUTFUT, AUDLT., They ere checked against
each other and if incoherent the Organizer prints a message
followed by a teable specifying for each stetement involved the

nunber of entries referenced.

As these examples are but a small part of the programmed
syntax and coherence checks the user can feel secure that an
adform organized without error expresses at least clerically,
his full intent.

3ek.0

3ek.1

Seke2

The Organizer is prograrmmed to recognize and clearly describe
guite a variety of possible syntax or coherence errors. Let us see

a few examples.

Symtex

A statement in‘ category 'xxx' does not have a terminal period.
BCD Format -~ category 'xxx' uses column outside item.

Inage Format - ceategory 'xxx' exceeds 12 punches plus blank.
BCD Format - category 'xxx' overlays previous format.

Literal -~ category 'xxx' has unbalanced dollar signs.

Category 'xxx' - item record audit references non-existent
entry of category ‘'xxx'.

Interval for category ':xx' 1s incomplete.

Coherence

The following statements must always refer to the same number
of output entries: SUBJECT DESCRIPTION, ENTRIES, RESEQUENCE
POSITIONS/CODES, RECODE, OUTFUT, AUDIT. They are checked against
each other and if incoherent the Organizer prints a message
followed by a teble specifying for each statement involved the

nunber of entries referenced.

As these examples are but a small part of the programmed
synvax and coherence checks the user can feel secure that an
adform organized without error expresses at least clerically,
his full intent.

3.1.1 When the user has finished preparing this adform with EDL, it
exists on the disk as a disk file of name ADFORM 'basic-lsgbel!
where basic-label is a 6 or fewer character neme which the user
has selected to ldentify all report and process tiles associsted
with this perticular adform. The user may then give the ORGANIZE

cormand vwith arguments specilfying:
1. The basic label of the adiorm.
2. The mode of input - BCD, Column Binary, /fdmins Binary.

3. The size of an input item; in case of Admins binary this
is dirrelevant and the name of the source file of the input

category records is specified instead.

4, An optional argument tdiag' which asserts to the Organizer
not to produce any oif the intermediary files but only to
scen the adfom fov symtax and coherence errors. This is
done whether 'diag! is specified or not, but in the latter

case a valld orgenization produces intermediary files.

If the ORGANIZE command 1s given free of arguments, the console
prints back the proper argument syntax. (This is so for every
comnend in Admings; the term 'command' is used to refer to programc
that exist on the disk loaded, awalting execution, i,e., core
images. The term 'instruction' 1s used to describe 'verbs'
understendable to core images.)

3.1.2 If the Organizer finds an error in the mdform, it will continue
the scan of the adform seeking further errors. However, certain

errors dis-orient the program, in which case the Organizer stops.

313 When the user has achieved a valid organization his disk files
hold a compiled MAD program, named 'Basic~Lebel BSS' and U4 inter-
mediery files conteining:

1., A ring embodylng the structure of his adforms.
A table containing the English subject descriptions.
3. A resequence table,
A

format table,

These disk files are used by the rest of Admins as the data prog-
resses thru the system. Their existence need not concern the user,

3.m.1

ollle 2

The Organizer never saw the users data. It is the function
of the Processor to apply the 'orgenized' adform to the data under
£

interactive control.

The function ol the Process command is to load up the following

into a *procecs image!.
1. The RIS program produced by the organirzer.

2. The appropriate interface subroutine (BCD, Column Blnary,
Admins binary).

Je The control program which shall apply the organized
prototype to the data and produce online reports and

disk summary files.

4, A psubroutine 'BIBLIO B3C' vhich is called after each
input item record iz read into core with a pointer to
the input buffer and is expected +o return a value »

representing one of’ the following messagec:
a. The control program should proceed.

b. The control program should halt because this iten
is out of sort, or for some other reason., BIBLIO

may print a message if it wishes.

c. This item should be skipped. This permit samples,

random or otherwice, of the input file to be taken.

I & disk file of name BIBLIO BSS is found in the users file directory
it 1s loaded into the process image; otherwise a BIBLIO BSS which

alvays returns the first (i.e. the proceed) request is used,

The user prdvide; the following information as arguments when
he invokes the PROCESS command:

1. The basic label of the adform which he wrote and now

 vishes to apply to his deta. (A link must exist in the
,users directory of name 'INPTO Baslc-label®' which points
| to the input data file,)

Sele3

2. The mode of the input data file - BCD, Column Binary,
Admins Binary.

3. Optionally, that he is producing an output data file
which he wished to 'append! to an slready existing
output date file,

L. Optionally, that he wishes to save his 'Drocess image'.
IT this option is not taken the 'process image' is

placed into core for execution.

The instructions the user may type at the console to his

process image are as follows:

-

DO 'm' or 'all' - which instructs the processor to process 'nf
input items or all of them. As audit errors are found a one line
message of the following form is printed on the console. TItem ‘
number/Category name/reason for message/contents of input positions/

output entries,

The possible reasons for the message and their mnemonic codes

are:
Mnemonic Reason

SAMP the user requested a sample.

IAUD input audit discrepancy.

RSP resequence position discrepancy.

RSC resequence code discrepancy.

PRIM ' user supplied primitive flagged an error
(i.e. returned 'false' when called).

MAX user specified maximum for number of
entries was exceeded

MIN same Tor minirmm.

QAUD ' output audit discrepancy.

AITR audit item record discrepancy.

INT interval discrepancy, i.e. a value which
fell out of all the intervals was input.

ARTH The numerical value exceeds the maximum
' specified by the entries statement.

Seme b

3.me5

3em.6

Seme T

3.m.8

3emme9

3.1m.10

3.m.11l

If the user has fturned on' the silence feature all such

messages are suppressed.

Unless a relevant comtrol interrupt is brought to bear, the
process image will process the instructed smount of items and print
a summary line telling the total items processed thus far, and the
total errors discovered. If the user has instructed the processor
to do 'all', processing continues until an 'end of file' is encountered

on the input detae file.

SAMPLE - This command processes one item printing the contents
of the input positions end the cutput entries for each category
processed., In effect this produces a 'slow motion fiim' of the
application of the adform to one item., Sample may be used at any

time during processing.
STOP - This instruction terminates processinge.

CONTROL 'n' - This tells the process image to control inter-
rupt aftter 'n' errors are found in the input file. At a control
interrupt the summary line is printed on the console and the user

is free to give any command he wishes.

SET - This instruction puts the user in a mode where he types
a category name followed by 'n’ a tolerance setting; he may do so
for as many cabtegories as he wishes. A control interrupt will occur

if 'n''errors in the specified category are exceeded,
SETOFF -~ This turns all individuel settings off.
DECONTROL - This turns the interrupt features (CONTROL, SET) off.

SPECIFY -~ This prints ougﬁa small table showing for each cate=-
gory in which an error has occurred, the number of errors and the

current tolerance setting.

SILENCE - This turns off the printing of error messages

Tegture.

3.m.12

3em,l3

3.m.1k

Seitel5

3.m.16

SeMmelT

FRINT - This turns on the printing of error message feature.
Initially this feature is omn.

- DUMMY - This instruets the process image not to produce an
output file, that is the user is processing the file in order to
generate the reports and not to produce data output. Obviously,

this introduces an econony in computer time usage.

DATA ~ This instructs the process image to produce an output

data file. This feature is initlally on.
SKIP 'n' - This causes the processor to SKILP 'n' input items.

VERIFY 'on! toff' - If this feature is 'on' tgi processor
prints the one line summary message every 100th iteh record

processed.

These instructions are typed on a line. The ‘'process image’
responds to them, either by processing data (printing messages
as it process), or by printing some information, or by turning
some 'switch', and then prints back 'ok' whereupon the user can

type another instruction.

3.n.1l The output of the 'process image' 1s:
1. A binary disk file of aggregates.
2. A binary disk file of errors.

3. Optionelly, the output data file in Admins binary form
which exists on disk file 'item basic-label' or, 1T

appending, on 'append basic-label'.

Upon completion of processing there are two printed reports

the user can obtain.

3en.2 (1) Marginals -~ this consisted of a printout which contains

for each category and each entry in the category:
1. The number of items with that entry (category).
2. 1 as a percentage of the total number of items.

3. 1 as a percentage of the number of items having

that category.

L, The english subject description.

3.n.3 This report is composed from the binary aggregate file and the subject
description table by typing the MARGINAL command followed by the
basic~label. The report is placed on the disk file"MRGNLSvBasic-
lebel' and may be printed on the console using the 'PRINT' command
in CTSS* or by requesting it be printed offline on the 1LOL using
the 'RQUEST'! command in CT3S,¥¥¢

3.n. b (2) Error Report - whereas the error messages printed out by
the process image wereone-to-one in relation to the error
causing the message, the user may ggﬁerate an error report
which summarizes the errors with respect to the cause of

the error; the form of the error report is as follows:

*
CTSS Manuel AH.5.03

*K -
CTSS Manuel AH.6.06

TFor each category the nwiber of errors are specified. Under
each category heading, lines of the following form appear. Error
type; contents of input positions; number of errors of this type
with these contents; serial numbers of the first 3 items in which

the error occurred.

The report is composed from the binary errors file by typing
the REPORT command followed by the basic-label., The report is
written on disk file 'REPORT basic~-label! and may be printed by

the same means described for printing the marginals.

2
)
~

.0.1

File Inversion

The data output from the process sub-system is a linear sequence
ol item records each containing entries under the categories specified
in the adform (the prototype of the item record). This data is not
usable by any further part of Admins until this item record file
has been inverted, that is, until for each category required, a
category record is produced. A category record is a disk file con-
talning the entries under a particular category for all items, the
english subject description of the category and its entries, the
agoregates of the category and its entries as well as other descrip=-
tive information from the adform. The disk file name of a category
record is 'CATG FILNAM' where CATG is the name of the categoryv
(assigned with the NAME instruction in the adform) and FILNAM is
a user assigned name of the source file from which the category

record was produced.

A file is inverted using the INVERT command, which requires
the following information from the user.

l. The basic=label of the item record file.

2. The name of the source rfile,

3. Optionally the names of the categories to be inverted.
If none are specilfied all categories Ifrom 'ADFORM basic-

label' are inverted.
The invert command takes as input:
1. An item record file.
2. The ring structure produced by the érganizer
3. The subject description table.
L, The binary aggregates file.

o
These four are integrated to produce the category records requested.

prs.

BOP.J.

Data Alterstion

Decisilons made from the reports of the process image me]
require a few alterations in the date (l.c. the entries) of certain
categories for certain items. This 1s done using the ALTER com-
mand. The command is typed followed by a category record name
and the source file name. The ALTER commnend obeys instructions
whnich can print or change the entries of items In the category
record specified. The ALTER program automatically redistributes

the aggregates to reflect the changes to individual items.

i,

3.q.1

Appending Files

The APPEND command concatenates the item record file 'ITEM
basic~label! and the item record file 'APPEND basic-label', Both
must have been produced by the same process image. As well, the
binary aggregate files from both are 'added' together to reflect
the concatenated file, The APPEID command is typed followed by the
basic label of the appfop:riate Vitem' and 'Tappend' item record
files.

o

g

L,a.1

The Analyzer

The Anglyzer 1s the key sub system inasmuch as the user has
organized and processed his data in order to analyze it. Generally
speaking, data analysls consists of a dynamic interaction between
classification and summarization according to a theory (or set of
hypotheses). As the Analyzer is a tool, a perspective on the
Analyzer's capabilities can be gained in a discussion of the tools

required to classify and summerize heavily structured data.

Classification, clerically, is a process of combining charac=
teristics and neming these combinations according to a plan. Ir
the classification is to be empirical, i.e. is responsive tc the
empirically observed items which fall under the classification, the
data must be summarized in terms of the classification, éand the
resulting summarization fed back into the plan. The classification
is built up as the a priori (theoretical) notions interact (in the

mind of the user) with empirical summarizations of the data.

As the Analyzer is the users clerical aid in this process of
empirical classification, 1t must possess tools for combining
characteristics, applying classificatory names to combinations of
characteristics, and summarizing the data in the framework of the

classification.

Characteristics are combined by bullding indexes to the items
in the file. Indexes are lists of token pointers to items. The
criteria for building an index are stated in terms of the existence
of a category and/or (combinations of) entry(ies) in the item

record file.

Indexes, once built, may be conceilved of as sets of items.
The basic set theoretic operations may be applied to these sets
producing complex indexes. In turn, the set operwilons may be

applied to complex indexes, ad infinitum.

llanes nmay be given to indexes as they are bullt. The naming
mechanisms allow both symbolic as well as mnemonic english names;
these mechanisms can interpret names as expressing hierarchical
or facet relationships. The neames and explicit descriptions of
the indexes they label are organized in a 'classified directory'.
As indexes are constructable both within and across source files,
the classified directory is a very complex structure, as it is
responsible for the recording of arbitrarily complex index con=

struetion and classificetion.

Sumarizatlion involves tabulating the empirical data in the
framework of the classification embodied in the classified
directory. As data and user purposes are varied there is a large
repetoire of summarization procedures in the Analyzer. One is the
ability to bulld a table, whose rows and columns are complex
indexes existing in different source files, and whose cells are
the sizes of the intersection of the row and column co~ordinate

indexes.

The Analyzer 1s a highly interactive program. The user types
an instruction and is immediately presented with its effective
result. Almost every instruction the user issues states a decision
he has made as a result of informstion presented by the Analyzer

in response to a previous instruction.

4,0.0 The instructions available in the Analyzer fall into the
following types:

Lol 1. lMaintenance of the classified directory. As the user
proceeds in his analysls, he is empirically combining
characteristics of the items of the data and giving these
empirical combinations names, The sequence of his set
operations and the names he gives are stored in a clas-

sified directory.

4.b.2 2. Maintenance of the 'file focus' ~ As the analyzer crosses
file§ the user needs a group of instructions which tells
the Enalyzer which source file he wishes to work and
which allows him to continually switch back and fortn

between these files as he goes.

4, b.3 3. Set operations - these instructions are used to empiricelly
construct the boolean combinations of characteristics in
the data.

N 4, Summarization -~ The Analyzer permits many types of data
summerization from simple marginals to complex co=-

occurrence tables.

HaDa 5. Recoding -~ The Analyzer has instructions for certain

necessary recoding of category records as analysis proceeds.

NS 6. Mudti-level files - As the analyzer permits integrated
analysis of multi-level files (i.e. the data exists at
different levels of aggregation or cgn'be sub~divided
into groups), Instructions which allow the user to pass

between different grouping levels are raguired.

Loe.l

L,c.2

h.c.3

%)
L]
=

i
ra

hoeos

File Focus

WORK ~ The user types the neames (these nemes are the names of
the source files the user assigned to the category records when he
inverted the item record file) of the files he wishes to work. All
subsequent relevant instructions will then be applied, in parallel,
to each of the files being 'worked'. These files constitute the

Twrorklist'.

UNIVERSE =~ The usexr types a list of all the files in his
universe of discourse. Vhenever he chooses he may then type
'work universe' and all the files he declared to be in his universe

go into the worklist.

ADD -~ The user types the names of the files that should ba

added to the worklist.

SUBTRACT ~ The user types the names of the files to be removed

from the worklist.

WORKLIST ~ The Analyzer vrints back the current worklist.

Classified Directory Maintenance

a0 The classified directory consists of all the names assigned
to all the indexes constructed across ell the files that have been
worked. The user may assign two 'names' to each index; one less
than 6 characters (a symbol) and the others between 7 and 30
characters.” The name (7-30) may be broken down into facets by

using '.' as a separator.

b.d.1 LIST prints out a list containing for each index the source
file neme, the Iindex name, the index symbol, the index size, the
paragraph number in which the index was created. If LIST is typed
alone all indexes are listed. Alternatively, speciiic indeuixg
can be asked for either by name or by symbol. As well one can
make implicit requests using & %' novatlon: For example:

LIST BR¥4 lists all indexes whose symbol has B as character 1,
R as character 2, and L as character L; LIST BRITJ,CHINA lists
all indexes whose first facet is BRIT, third is CHINA. These

may be intermingled in one request.

4,4.2 LISTC 1s the same as LIST except LISTC explicitly documents
the construction of the indexes listed, i.e. what operators acting
on which categories and entries and in what sequence produced the

index.

o

ALLIST - whereas LIST and LISTC operates in parallel over the

files in the worklist, ALLIST gives each index requested (same

conventions as LIST) and under it the files in which i exists;
they need not necessarily be on the worklist at the time the

instruction is given.

hod, b SOURCES prints the index names and the set operation from .~

its arguments were bullt.

I, .5 RESULTS prints all the index names vhich have the arguments

as one of their direct parts.

e

L.da.6

NAME is used to assign a symbol/name to a name/symbol or to
change a name/symbol. It is effective across all files, not

necessarily those on the worklist,

RECLASSIFY is the same as NAME except it only affects those
files on the worklist. .

DELETE. is used to delete indexes for fileg on the worklist.

DEPAGE -~ The classiiied directory is kept in a paged memory s
may be removed from one fnalyzer core image and transferred to
another., DEPAGE is used to write the directory into a disk file
TNAME PAGES' where NAME is specified as an argument in the DIPAGE
instruction., This is very handy because a user can build a very
complex classified directory and then store it on the disgk in a
smell amount of space. This directory can then be read into an
'empty' Analyzer core-image belonging to its author or perhaps to
some other individual who wished to use the complex classified

directory.

The Analyzer automatically depsges itself every 10 directory

altering instructions providing bickup protection to the user,

g

L,e,0

L,e,1

Set Operations

To neme the result of a set operation instruction the arguments
should be followed by an '=' and then & name and another '=' and a
symbol. Symbols may precede the name, and, 1f the user wishes,
only one of the two need be present. If neither is present the
sumnary line for that operation is printed but the actual index
1s not built and therefore never saved, i.e. no directory entry

is made for it.

IIDEX is used to bulld an index to items possessing a specified
category or an entry in a category; or one or more of a list of
entries in a category; or if the category is numeric, to Ibecus.
whose value possess the relationship (less than, greater than, or
equal to) with a specified constant. The sumary line returned
for each file on the worklist is Ifile name, population, index size,

index neme-~if assigned.

INTERSECT is used to build an index containing those ltems in
every one of the arguments of the INTERSECT instruction. (Up to
10 indexes may be specified.) The summary lines returned contain
the argunents and for each file on the worklist, the file name,
ergunent sigzes, file population, result size, Fisher Exact Text,¥*
applied to the intersection if bubt 2 arguments were specified,

and the result neme--if any.

UNION 1s similar in form to INTERSECT except the result index

contains 1tems present on at least one of the arguments. And, of

course, no Fisher Exact Test is applied.

COMPLEMENT is used to bulld an index to items not in its

single argument. Again the swmary line is similar to INTERSECT

RELCOMPL =~ The rclative complement is used o build an index
to all items in its second argument which are noit in its first argu-
nent. That is, RELCOMPL is the complement of the szcond argunent
reletlve to a universe specified by the first argunont.

N

The TET is a statistic which measures the randomr<us of the size
of an intersection.

Surmarization

h.r.1 SUBJECT prints the aggregates, aggregate percentages and the
subject description for the category specified. If particular
entries are specified, only they will be printed.

h,r.2 INTERVAT: tekes as argument the name of a category whose entry
is a numeric value, indexes (optionally) and percentage breakpoints.
It orders the entries (for only those items in the indexes if
indexes were specified) and prints out the value of the entry at

each percentage breakpoint.

h,r.3 DISPLAY is used to display the actual entries for items in
an index. It accepts as arguments the categories to be displayed

and the index.

L.t.h PERMUTE is used to simulate the combining of entries in a
category. It accepts as arguments a category, a list of entries,
en index and a threshold value for the Fisher Exact Text. It
then simulates the recoding of the entries supplied by trying
all permutations of the entries as a single entry intersected
with the supplied index. The entries which produce a FET value
over the given threshold value (or only the highest one=-if

requested) are printed out.

PATTERN - As the data may include categories with multiple

entries in the item the user may be interested in a summarization

\n

(A
T O W

of the patterns as opposed to the individuel entries~-which can
be obtained from the TABLE instruction. PATIERN accephs as
argunents a multiple-cntried category and (optionally) indexes.
It prints out for each entry pattern in the data the number of
veeurrences in the total populstion and, 1f Indexes were supplicd,

in the sub-population specified by each index.

bot G VAILUES prints the number of occurrences of ©:c¢h value in the
numerical category record supplied, as well as the number of

cecurrences for the items in the indexes-~if the; ore supplied.

B] c-bu-l"

Co=occurrence Tables

The tables generated are of two types.

1. The colums contain indexes and the rows contaln cate-

gories, i.e. each entry in the category is a row.
2, Both the rows and column ccntain indexes.

Tables are either labelled (TABLES instruction) or unlebelled
(FIGURES instruction). They are printed on the console and may b:
also printed on the disk (DISK instruction). Many types of per-
centages may be printed on the tables (STATS instruction) as well
as the Fisher Exact Text. Users are encouraged to program thair owa

statistical tests as well.

Tables are printed in horizontal parallel form with respect to

the worklist.
COLS is used to specify the indexes on the columns.

ROWS 1s used to specify the rows, which are elther indexes or

categories (in which case each entry becomes a row).

DISK specifies the name of a disk file on which all tables
should be written until a new name is specified or DISK is +turned

Toff'.

TABLE prints a labelled table on the console. For indexes the
labels are the names assigned to them. For categories and their
entries the labels are the english subject descriptions from the
adform. The cells of the table contain of course the sizes of the
intersection of the indexes on the rows and columns Ioxming tne

co=ordinates of the cells.

FIGURES prints an unlebelled table. If a . -k file has Dbeen

specified a labelled table is printed there.

L,r.13 STATS is used to specify the statistics which appear on the

teble., The currently avallable ones are:

PC/TOT - each cell as a percentage of the total population of
the file.

PC/ROW - each cell as a percentage of the row marginal.
PC/COL =~ each cell as a percentage of the column marginal.
PC/'N' - the ratio of the cell to the nth cell in the row

as a ratio of the colum marginal over the nth
column marginal.

SIG -= Fisher Exact Test

OFF - turn a1l statisties off. The STATS settings epply
till they are chenged or turned off. .

hog.l

hog.2

Recoding

RATIO is used to produce a category record which, item by
iten, is the ratio (over 100) of two other numerical category

records.

COUNT is used to produce a mmerical category record, where
cach entry is the sggregate of that item over a list of supplied
indexes. It may be used to simulate 'threshold' or 'majority!
logic of the kind: if an item has n out of m specified characher-

istics, classify that item which characteristic X.

RECATEGORIZE builds a category record whose entries corres=-
pond to the indexes specified as arguuents. It can be used to’
regroup a group of related complex indexes. Thls can be done,

as well, by writing an adform with Admins Binary input.

L.h,O

L,h.1

I, b

h.h.3

Py '
(IR

Mdti=~Level Iiles

A file is multi~level if a subfile based on bibliographic
tokens in the main file exists (or is constructable). The
selection of the items which will make up the subiile may be
damographic, kinship, or based on any arbitrary index. The
instructions for dealing with multi-level files have two

purposes:

1. Construction of a subfille from a main file, i.e. the

selection of the subfile bibliographic tokens.

2. Relating data in the subfile to the items in the main
file and vice versa and aggregating data in the main

file over the subiile.

The full power of the other Analyzer instructions can be brougit

to bear in anelyzing subfiles in relation to the main file,

UNIQUE accepts a category whose entries are bibliographic
tokens and produces a category record containing each unique
occurrence of a token. A category record containing biblio=-

graphic tokens is called the ‘'basis' for the subfile,

SUBFILE creates & category record contalning the bibliographic
tokens only for those Itens in & specified index. This instruction
{in conjunction with the UNIQUE instruction) permits the user to

build a basis for any arbitrary subfile.

MAP - This instruction maps category records from one file
into another, using the respective bases as a cross reference

between flles.

AGGREGATE ~ This instruction aggregates the items in an indox
in one file over the items in a second file, u:iry the respective

bases as & cross reference between the filles.

SORT orders a category record of bibliographi’« tokens.

L.i.1

The SYNTAX instruction can be used to ask the Analyzer to print
the gbbreviatlons and syntex of the instructions specified as argu-
ments, The syntax for all instructions are kept on a disk file
!'SYTAX CROSS' end are read in when the analyzer is initiated.

That is, each analyzer core-image contains some self-documentation.

The user may type one or more insbructions (with ar ents
J Cyp

to the Analyzer; the instructions are separated by commas. A ! /!

kills the line being typed back to the last comma. An extra carriage

return tells the Analyzer to execute the above instructions.
completed, the Analyzer types a paragraph number (cross referenced
in the classified directory) and the user nay type the next para-

When

graph; which may be but one instruction.

L, ko1

The Analyzer is error-preof in the sense thé.t the user cannot
give an instruction in error, which causes him to lose some work
inadvertantly or lose his core image. If the Analyzer detects a
user error, it prints a clear explanatory message and is unable to
Tharm' itself. All error messages are kept on disk file 'ERRCRS
CROSS' and are read into core when needed, thereby saving space and

putting no storage limitation on the richness of error messages.

L,1.0

L,1.1

b,1.3

Storage Management

As there are five basic elements which require storage during

analysls let us relate each separately to the storage mansgement

issue.

1.

2.

Programs - As the analyzer offers an ever growing repetolre
of instructions, core might be exceeded someday by pro=
grams alone. Therefore, the Analyzers user—interface links
up with the subprograms embodying individual or small
clusters of instructions at execution time. It reads

the entry points of all instructions from a disk file
table. This allows the Admins administrator to make an
Analyzer image tailored to a users needs, i.e. only
containing those instructions a specific user requires.

A misjudgment does not involve loss of work, for the user
can always depage an ill-suited Analyzer image and repage

his directory into a freshly prepared one.

Classified Directory - As the classified directory is paged
(512 words to a page) and all‘address pointers in the
classified directory are page and word numbers (i.e. relative),
directories are relocatable across Analyzer core images.

As well they are a compact form of backup‘and saving ones

work. As the classified directory solely contains directory
(i.e. prototype) informetion and only points to blocks of
token pointers which are the actual indexes, classified

directories are only a few disk records in length.

Indexes - Indexes are lists of token pointers tightly
packed in blocks of storage. The information as to what

an index is, i.e, the sequence of set operations which

led to its construction, is in the classified directory.
Thet is, the indexes (token pointer 1ists) are dispensable.
They can always be rebuilt, as required, by a recursive
procedure 'evaluating'! the classified directory. Realizing
this, the Anelyzer purges (that is, returns to free storage)
all unessentilal indexes whenever memory is full. This
guarantees almost indefinitely long analysis, until the
difectory itself overruns memory which seems very unlikely

because it would involve an extremely complex analysis.

h T

La.kh

L,1.5

Se

Data -~ The actuel data, the category records, are kept on
disk until they are specifically recuired. Whereupon they
are read into memory, used, and immediately deleted from

memory.

Comnment information - The error comments, which are numerous
and rich, and an explanation of each command will be kept on
disk until specificelly required, then read, printed or

otherwise displayed but not kept in core.

hom,1

The data manipulation functions of the Analyzer have been
separated from the application instructions. This gives us a
langusge (in the sense of an integrated group of subprograms)
independent of the Analyzer. As the rational reconstruction of this
language 1s yet incomplete it would be rremature to specify it pre=-
cisely. Vhen complete, however, it would offer to the sophisticated
user & language, based on MAD, for referencing a data base, operating
upon 1t, and keeping a classified directory to what he is doing.
This would ellow users to program their own information models (say
a special purpose analyzer or a heuristic tree analyzer--as one of
the authors has done with a now obsolete version of the language)

or scientific models (say a data based complex simulation).

\J1

8.2

DYNAMIC LOOPS

Having described the statics of the three Admins sub systeme-
Organizer, Processor, Analyzer--one can now relate this tc descrip-

tions of the Admins use dynamics.
Organizer-Processor Loop

This is the interactive process involved in preparing date for
enalysis. The problem is to find agreement between a normabive
desceription of the data which will support onds analysis and the
actual data:. Any discrepancy between data and prototype, other
than that caused by a clerical error on the part of the user, e.g.
mistyped adform, can be resolved in one of two ways: change the
prototype (adform) or change the data (iten record file). The
Organizer-Processor loop is concerned with the flow of information
involved in deéiding whether to change adform or data and how, as

well as with the tools used to implement these decisions.

In writing his adform the user has a hard copy descfiption of
the data and an enalysis purpose. He may heve, as well, aggregate
information from previous analysis results, perhaps from Admins if
his input is Admins Binary. He uses the Organizer language to
construct an adform which expresses the data prototype as he believes
it now exists and as he would have it transformed. He types the
adform onto the disk using a context editing program EDL* to input
and alter the adform. Then the user types the ORGANIZE cormand,
most likely with the diagnostic option. Users being human the
Organizer finds syntax and/or caherence errors. A description of
each error is printed narrowing the error source down et least
within the category. This information is used to change the adform,
whereupon 1t is resubmitted for organization by typing the ORGANIZE
command again. Usually diagnostic errors are clerical ones but
occasionelly the coherence checks pinpoint actual logicai flaws in

the adform.

.‘(.

'op cit

5.2.3

Eventually the user comes out with an 'organized adform'. The
PROCESS cormmand creates a process image which will epply the adform
to the data. A% least ‘the first time through a new data file the
user will run in "dwamy' mode, that is, not producing an output file.
The user will semple a few input items and follow the input/output
changes with his adform in front of him. This may turn up enough
errors in the adform to justify quitting out of the process imege

and cheanging the adform.

If the user suspects the whole file, or perhaps just certain
categories, are particularly error prone he issues the appropriate
control instructions. He then may process part of the file.

Error corments are printed out as the data is processed. Eventually
he terminates the process, and gets the marginals and summary error

report using the MARGINAL and REPORT commands, respectively. He now
has produced the following information in addition to information

existing prior to processing.
1. ©Seample item records.
2. ZIrror messages.

3. Aggregates of the entries and categories over the part

of the file processed.

4, A swmarized error report.

Declsions to ORGANIZE and change the adform are impiemenﬁed
with EDL. The PROCESS command can then be used. Decisilons to
change the data are implemented with the ALTER command after an

item reéordlfile has been produced and inverted.

S5.b.l

Admins Binary Input

Analysis of category records may prompt the user to reconcep-
tualize his data into macro-categories his empirical analyses have
shown to be fultful. He can write an adform which publicly states
these macro-categories, that is, an adform which combines entries
from different micro-categories into macro-categories, This adform
can be applied to the category records and as described in the
Organizer-Processor loop discussion yield an item record file.

This item record file can be inverted and anelyzed along with any

other category record from the same source file.

5.c.1

Vertical and Horizontal Processing

The Processor can be used to produce an item record file
which is a sample of the source file. The samples can be staggered
or random or conbtiguous. If the sample is contiguous, i.e. taking
different chunks of the file, the chunks can be processed separaiely,
and concentrated with the APPEND cormand; analyzed separately or
analyzed together after concatenation. These flexible options are
useful in a current daba spplication where items are being originated

over time and need be added to a 'master! file,

An adform need not describe all the categories in a file. One
can have many adforms, each describing from one to all of the cate~
gories in the file. Each adform (selection) can be processed
separstely but the category records inverted from the item record

Tile can be analyzed tbgether.

Multi=Source Files

One can analyze multi-source files by writing adforms for
each flle and processing them separately. Category records from
nany adforns across one or may files can be analyzed in parallel
by the Analyzer and reprocessed 1f desired, as Admins Binary input.
The coding across files can be different at the category and/or
entry level. The worklist feature and the classified directory
of the Analyzer can be used to bulld up the characteristics of
each source file until a classification valid across the files is
applicable. Then parallel sumarizations can be produced for the

different source files.

5.c.1

Multi-Level Files

The Anelyzer can be used to construct arbitrary subfiles from
a main file. As well Admins can bring already existing subfiles to
analysls stage, and relate them to the main file; constructed sub-
files; constructed category records from the dlready existent sub-
file. ©Subfiles may contain categories of factual data from the
meln file, or aggregates of characteristics in the main file.
Since &8ll subfiles are in Admins binary form high level adforms
can be written which regroup the characteristics of the subfile.
The mein file and the subfiles (constructed and/or 'inputed') may

be multi-source, of course, as discussed in 5.d.1.

e

The task of describing all that Admins can do is g subset of
the task of describing all that a computer can do given that it
obeys the instructions add, store, and transfer on minus; that is
an impossible task. What we hope we have succeeded in doing is
giving a flavor of the power the systemic generality of Admins
affords. ‘

